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Abstract

Background: The International Challenge for Automated Prediction of IM@m MRI Data dfered independent, standardized
comparison of machine learning algorithms for multi-clelsssification of normal control (NC), mild cognitive impaient (MCI),
converting MCI (cMCI), and Alzheimer’s disease (AD) usingin imaging and general cognition.

New Method:We proposed to use an ensemble of support vector machinddgS¥at combined bagging without replacement
and feature selection. SVM is the most commonly used algorin multivariate classification of dementia, and it wag¢fiere
valuable to evaluate the potential benefit of ensemblirgtiipe of classifier.

Results: The ensemble SVM, using either a linear or a radial basistimm¢RBF) kernel, achieved multi-class classification
accuracies of 55.6% and 55.0% in the challenge test set (606RIGACI, 60 cMCI, 60 AD), resulting in a third place in the
challenge. Similar feature subset sizes were obtaineddtr kernels, and the most frequently selected MRI featurer® the
volumes of the two hippocampal subregions left presubroudind right subiculum. Post-challenge analysis revealggktiforcing

a minimum number of selected features and increasing théeuof ensemble classifiers improved classification acguipdo
59.1%

Comparison with Existing Method(sThe ensemble SVM outperformed single SVM classificationssistently in the challenge
test set.

Conclusions: Ensemble methods usirzagging and feature selectiman improve the performance of the commonly applied
SVM classifier in dementia classification. This resultedampetitive classification accuracies in the Internatid@iagllenge for
Automated Prediction of MCI from MRI Data.

Keywords: Alzheimer’s disease; computer-aided diagnosis; ensesuport vector machine; mild cognitive impairment;
mini-mental state examination; structural MRI

1. Introduction mons et al., 2014; Bron et al., 2015) providing diverse, peae
o ] ) ) ) dent, standardized comparisons. The International Gigale
The combination of image analysis and machine leaming 1@, Aytomated Prediction of MCI from MRI Data (Sarica et al.,
construct structural magnetic resonance imaging (MRIaik- - 5416) henceforth referred to as “the challengéfered an op-
ers of dementia is an active research area (Falahati 0dK, 2 ity to compare dierent machine learning methods using
Rathore et al., 2017; Arbabshirani et al., 2017). Marffeti  recomputed MRI features and mini-mental state examinatio

ent methods have been proposed and evaluated with promisingivmse) scores supplied by the challenge organizers. Thie cha
results, however, there is a need for standardized conopatis  |enge relied on data from the Alzheimer's Disease Neuroimag

Sev_eral studies have empiri_cally compareffadent methods ing Initiative (ADNI) (Petersen et al., 2010), and a notatHar-
(Cuingnet et al., 2011; Aguilar et al., 2013; Sabuncu et al.gteristic, in comparison with previous challenges, wére t
2015) providing some insight as to which MRI features/and - iti_class classification of normal control (NC), Alzheiris
which multivariate methods are beneficial. More recentigle  jisease (AD), mild cognitive impairment that did not corver

lenges in dementia classification have been organized (Simg Ap at follow-up (MCI), and MCI that converted to AD at

follow-up (cMCI) as evaluation metric.

UData used in preparation of this article were obtained frioen&izheimer's This paper pr.esents our algorithm submitted for the chal-
Disease Neuroimaging Initiative (ADNI) database (adni.lsst.edu). As lenge. The algorithm used an ensemble of support vector ma-
such, the investigators within the ADNI contributed to thesign chines (SVMs), |e, a combination of Severﬁmently trained
and implementation ‘of ADNI apdr provided data but did not par- q\/\1e A SVM s the most commonly used multivariate method

ticipate in analysis or writing of this report. A complete tlis . L .
ing of ADNI investigators can be found at hitfadni.loniusc.edwp-  iN MRI-based dementia classification (Falahati et al., 2&e¢hore
contentuploadghow_to_apply/ ADNI _Acknowledgement ist.pdf et al., 2017; Arbabshirani et al., 2017), and the classife h

*Corresponding author at: University of Copenhagen, Depamt of Com- also been widely and successfully applied in studies usirng d

ter Science, Universitetsparken 1, DK-2100 Copenhagée@mark. )
Efjnf;“ ;&%ﬁzzsiaﬂgg%mﬁkﬂ Sarensen). opennag ar from the ADNI cohort (Weiner et al., 2015). Ensemble clas-
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Table 1: Characteristics of the challenge datasets. ADNI was launched in 2003 as a public-private partnersiaig, |
by Principal Investigator Michael W. Weiner, MD. The primar

n Age Sex MMSE score goal of ADNI has been to test whether MRI, positron emission
mean (SD) % male mean (SD) tomography, other biological markers, and clinical and-neu
Challenge learning set ropsychological assessment can be combined to measure the
NC 60 72.3(5.7) 50.0 29.1(1.1) progression of MCI and early AD. For up-to-date information
MCI 60 72.2(7.5) 467 28.3(1.6) see www.adni-info.org.
cMClI 60 73.0(7.3) 583 27.2 (1.9) The challenge organizers selected a total of 400 subjects
AD 60 74.8(7.4) 483 23.4(2.1) from ADNI; 100 NC, 100 MCI, 100 cMCI, and 100 with AD.
Challenge test set The subjects were split in a learning set with 240 obseraatio
NC 40 749(5.6) 45.0 29.0 (1.1) and a test set with 160 observations (Table 1). The subject se
MCI 40 724(8.1) 575 27.6 (1.9) lection and data set definition procedures are describetieon t
cMClI 40 71.7(6.3) 625 27.6 (1.8) challenge website (Sarica et al., 2016). Information altioue
AD 40 73.1(8.2) 575 22.7 (2.0 to follow-up diagnosis, used to determine MCI or cMCI, was

not provided for the challenge data.

sification methods such as the ones that ugkemint subsets 2.2. Features

of the data, e.g., bagging (Breiman, 1996), dfedent feature  The available features in the challenge consisted of 426 T1-
subsets, e.g., the random subspace method (Ho, 1998), may\ighted structural MRI measures computed using the cross-
many cases improve classification performance over a singlgactional pipeline of the FreeSurfer software packagesiger
classifier (Kuncheva, 2014), and ensemble SVMs have prev't5_3) (Fischl and Dale, 2000; Fischl et al., 2002), the age and
ously been successfully applied for dementia classifinai®  sex of the subjects, and their baseline MMSE score. The chal-
ing different types of MRI measurements and ensemble methenge organizers performed all MRI processing and made the
ods (Shen etal., 2012; Chincarini etal., 2011; Varol e28l12;  resylting MRI measures available to the challenge pastitip
Simpson et al., 2013). o Among the available MRI measures, we selected 33 brain volu-
The proposed ensemble method was inspired by the randojetric measures, 14 hippocampal subregional volumetra: me
forest algorithm that uses a combination of bagging andoand  syres, 66 regional cortical thickness measures, and tienel
feature subsets (Breiman, 2001). In particular, we combine of white matter hypointensities. In addition, we computéd 1
bagging without replacement with sequential forward fe&tu |opar cortical thickness measures as the mean of the ingivid
selection (SFS) to obtain feature subsets optimal for thM1SV regional cortical measures representing each lobe acgptdi
classifier. To the best of our knowledge, this is a novel way ofpe grouping defined by Schmansky et al. (2017). See Table 2
constructing the SVM ensemble. Previous feature subset efyr g detailed specification of the 124 MRI features consider
semble SVM studies, both within MRI-based dementia classii, this study.
fication and within other _application areas, were eithelepgr The supplied hippocampal subregional volumetric measures
feature subset-based using some form of feature selection @nq regional cortical thickness measures contained tistieal
ranking (Chincarini et al., 2011; Varol et al., 2012), ramdo ca)ly Jarge values in some cases. An automatic MRI feature
subspace (Waske etal., 2010; Xia et al., 2016), ora combmat pre-processing step was therefore implemented to bringrthe
of selectiorfranking and random subspace (Nanni, 2006; Lieneygr of magnitude to a realistic range (e.g., such that a mean
mann et al., 2007; Kuncheva et al., 2010; Chen et al., 2014} tical thickness of 2000.0 mm became 2.0 mm). This step
or combined bagging and feature subsets either using mnkinyas performed prior to the computation of the 10 lobar caftic
(Shen et al., 2012), random subspace (Tao et al., 2006)@rrec thickness measures.
sive feature elimination based on linear SVM weights (Asiais  FreeSurfer’s estimate of the intra-cranial volume (ICVjwa
etal., 2016). The last is non-trivial to extend to non-liINS&¥M also provided among the MRI measurements, and it was in-

kernels. _ _ _ _ cluded in the feature vector to allow the algorithm to autma
We experimented with using both a linear kernel and a raga)ly select it if beneficial.

dial basis function (RBF) kernel in the SVMs, and these two  The MMSE score was part of the information used to obtain
configurations were submitted for the challenge. A detaileqne cjinical diagnosis in ADNI (Petersen et al., 2010) wtiich
analyses of the classification results and of the selec&dri®  tr served as the label in the challenge. We therefore, in ad
subsets is presented for the ensembles submitted to the chaltion to the raw MMSE score, made an encoded version using
lenge, in addition to a post-challenge analysis of the perfo the ADNI thresholds as follows: MMSE 24 : 0 (we know this
mance of diferentfeature subset methods and ensemble sizesyn AD subject); MMSE> 24 and MMSEX< 26 : 1 (this is a gray
zone); MMSE> 26 : 2 (we know this is not an AD subject).
2. Materials and methods The final feature vector was 128-dimensional and consisted
of the 124 MRI features, MRI ICV, sex, baseline MMSE score,

2.1. Data _ _ and encoded baseline MMSE score.
The challenge used data from the Alzheimer’s Disease Neu-

roimaging Initiative (ADNI) database (adni.loni.usc.¢diihe



Table 2: Overview of MRI features.

MRI feature category n  ROI(s)

I/r accumbens aregrlamygdala, /i caudate,/f cerebellum cortex/i choroid plexus,
anteriofcentrajmid anteriofmid posteriofposterior corpus callosum,
Brain volumetry 33 |/r hippocampus, optic chiasmir pallidum, Jr putamen,  thalamus proper,
I/r ventral DC, 3rd ventricle, 4th ventriclgr linferior lateral ventricle,
I/r lateral ventricle, whole brain

Hippocampal sub- 14 I/r CAL, I/r CA2+CAS, I/r CAd+dentate gyrus/il fimbria, |/r hippocampal fissure,
regional volumetry I/r presubiculum,/f subiculum

Cortical lobar thickness 10 /rlcingulate cortex,/t frontal lobe, Jr occipital lobe, Ir parietal lobe, ¥ temporal lobe

I/r banks of the superior temporal sulcyscaudal anterior cingulate,

I/r caudal middle frontal/t cuneus, /i entorhinal, Ir fusiform, |r inferior parietal,

I/r inferior temporal, Ir isthmus cingulate/t lateral occipital, i lateral orbitofrontal,

I/r lingual, Jr medial orbitofrontal,/r middle temporal,/f parahippocampal,

I/r paracentral /f pars opercularis/d pars orbitalis, ¥ pars triangularis/i pericalcarine,
I/r postcentral,/f posterior cingulate/i precentral, ¥ precuneus,

I/r rostral anterior cingulate/rlrostral middle frontal,/t superior frontal,

I/r superior parietal/t superior temporal/i supramarginal/i frontal pole,

I/r temporal pole,/f transverse temporal

Cortical regional thickness 66

White matter

; " 1  White matter
hypointensities

Abbreviations: Ir; left/right.

2.3. Algorithm was therefore expected to carry important discriminatiferk
The algorithm consisted of an ensemble of SVMs (Cortegnation. The SFS procedure was applied by splitting the Chal-
and Vapnik, 1995), each trained usingteient random sub- lenge learning set stratified by class label into a trainimg)\aal-
samples of the Challenge learning set, and each relying onidation set, and, based on the current feature subset, thé SV
different subset of the features according to a sequential fowas trained using the training set while the validation sat w
ward feature selection (SFS) procedure (Jain et al., 2006).  used to compute the objective function (i.e., the multssl&A
ensemble classification was performed using majority gotin of SVM). After splitting, both training set and validatioets
among the SVMs. Subject age was accounted for using an agésatures were z-score normalized using the meaasd stan-
dependent normalization of the MRI features, and MMSE waglard deviations of the training set features to ensure that MRI
always included in the feature set of each individual SYM.  features and non-MRI features were in the same range. SVM
training at each stage in the SFS procedure involved determi
2.3.1. Accounting for age nation of hyper-parameters using grid search in an innessero
Age was accounted for using a previously proposed normalvalidation loop, followed by training of the SVM using the-op
ization procedure (Sgrensen et al., 2017) in which each MRiimal hyper-parameter values and the entire training se¢ W
feature was z-score transformed using a mean and standard dkenote the final SVM, trained using the optimal feature subse
viation that were dependent on the age of the subject. Qgntraaccording to the SFS procedurk, The associated mapping
to Sgrensen et al. (2017), we did not perform the normalizafrom candidate feature set to optimal feature subset istdeno
tion per class in order to avoid a four-fold increase of cdathk  ass.
MRI features for feature selection. The normalization pea
ters were estimated using the entire Challenge learningsdt  2.3.3. Ensemble construction
were subsequently applied to all MRI features in the Chglien The individual classifiers in the ensemble were indepen-

learning and Challenge test sets. dently trained by repeatedly running the full SFS procediere
scribed in Section 2.3.2 using random permutations of thed-Ch
2.3.2. Feature selection and SVM training lenge learning set. Thigfectively corresponded to training of

An SFS procedure with the multi-class (NC vs. MCI vs. each SVM using a random subsample of the Challenge learn-
cMCI vs. AD) classification accuracy (CA) of an SVM as ob- ing set without replacement and an optimal feature subgdt, a
jective function was used to select the optimal feature etubs it resulted in a set of trained SVMd;}, associated mappings
among the candidate featureShe MMSE score was always to feature subsetss}, and vectors of mean;} and standard
included in the feature subset because it contributed toltlve  deviations{o} of the training set featureS.he ensemble con-
ical diagnosis of the ADNI subjects (Petersen et al., 20hd) a struction procedure is illustrated in Figure 1.
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Figure 1:lllustration of the ensemble SVM construction which combibagging without replacement with SFS for feature subsetsefe A: the learning set
(rows as observations, columns as features) was split abnarm two non-overlapping halves stratified by class labdtaming set and a validation set. The
training set feature meapsand standard deviatiorss were used for z-score normalization of both the training dedvalidation sets. B: a full SFS procedure
was run using the z-score normalized training and validatits resulting in a mappingfrom the full feature set to a feature subset, and an assaciedined
multi-class SVMf that used that feature subset. C: at each node of the SF® geindn the graph of possible feature combinations, a mialiscSVM was trained
using the training set, and the multi-class CA of the traingtMSpplied to score the validation set provided the SFS dhjedunction. In the illustrated example,
the SFS procedure terminated at the first feature in the filis{#e search path is illustrated as a dashed gray linedaite column for the selected feature is gray,
and the vertex at which the SFS procedure terminated is maskedtick black boundary), and it terminated at the combinatibtihe first and last features in
the Nth split. The final ensemble consisted of the feature subsepimgsg{s;, . .., Sy} and associated trained SVNIg, ..., fy}, and the training set feature means
{u1, ..., pun} and standard deviatiore, . . . , oy} for normalization.

The combination of data subsets and feature subsets in emherey is the predicted label.
semble SVM construction was inspired by the random forest al
gorithm (Breiman, 2001). However, the proposed method used.4. Experimental setup

bagging without replacement for data subset selection && S We used the LIBSVM library (version 3.22) (Chang and
for optimal feature subset selection. A general empiriaad$ | in 2011) for SVM training and classification. This meant
demonstrated that bagging without replacement perforreed b {hat the multi-class classification was performed usingdne-

ter than with replacement in situations with imbalanced antygainst-one” approachThe ensemble method, including the
noisy data (Khoshgoftaar et al., 2011). The data is balancedrs procedure, was our own in-house Matlab (R2015b) code.

on this study, however, the classes are noisy due to the use ¢he following parameters and settings were used in the exper
clinical labels and lack of definite ground truth, and dueh® t  ents:

clinical overlap between the classes. The use of SFS for fea-

ture subset selection instead of random selection allonfeée e SVM kernel:{linear, RBF
ture subsets that are optimal for the SVM while still prowigli
relatively fast ensemble construction in comparison wiimg
computationally more involved feature selection alganigh —Ce{2321,.. .,

SVM hyper-parameter grid:

2.3.4. Ensemble classification - ye{27°,27%...,2% (only for the RBF kernel)

The final classification of a feature vectofrom the Chal- Number of inner cross-validation folds for SVM hyper-
lenge test set was obtained using majority voting among the parameter search: 3

SVMs in the ensemble

Number of SVMs in the ensemblét = 25

N
fensembikX) = argmaxy | g(fi(s((x - ) @ 7)), wy),

@i i=1

Proportion of observations per class in trainjngalida-

_ _ _ . tion set in the SFS procedure: 75%5%
whereN is the size of the ensemble; is the jth class labele

denotes element-wise division, agf, -) is an indicator func-  The random number generator for Challenge learning set per-
tion defined as mutation was initialized using the same random seed for each
of the two constructed ensembles (corresponding to usihgrei

Lity=w the linear or the RBF kernel) for comparability.

g(y"")z{ 0 ify+w



Table 3: Test set classification accura@esl true positive fractiond'he accuracies used for final ranking in the challenge ar&edan bold font.

4-class CA 3-class CAR TPRc TPRyc TPRme  TPFap
A+C C A+C C C C C C
Ensemble SVM
linear 37.0 55.6 50.6 68.8 70.0 20.0 42.5 90.0
RBF 35.6 55.0 48.0 68.1 725 15.0 42.5 90.0

Individual SVMg
linear 35.4(1.4) 54.3(2.3) 48.6(2.1) 67.4(2.3p5.7(6.9) 23.0(6.4) 40.6(7.5) 87.7(3.7)
RBF 35.1(1.4) 52.9(2.0) 48.3(2.6) 65.6(3.063.3(7.6) 22.0(8.3) 40.5(7.1) 85.6(3.6)

Abbreviations: A-C, Artificial+Challenge test set; C, Challenge test 8; classification accuracy; TRRrue
positive fraction for theéth class

8NC vs. MCl vs. cMCl vs. AD.

®NC vs. (MCIU cMCI) vs. AD.

¢Mean (SD) classification accuracy of the 25 individual SVK$hie ensemble.

25, Challenge structure Table 4: Challenge test set confusion matrices for the enge8WMs. Rows
. . correspond to predicted class and columns correspond taugelass.
The challenge organizers generated an additional 340 arti-

ficial test observations that were joined with the real téseo-
vations in the Challenge test set to form a combined testfset o

Linear kernel

500 observations. This combined test set was used in thesonli NC MCI cMCI AD
part of the competition that was hosted on the Kaggle competi NC 28 16 6 0
tion platform (Sarica et al., 2016). We term this combined se MCI 7 8 11 0
the Artificial+Challenge test set. The ArtificiaChallenge test cMCl 5 10 17 4
set was splitin half in a public and a private test set. Dutirgy AD 0 6 6 36

online part of the challenge between December 21, 2016 and
June 1, 2017, teams could submit an attempt each day and get
the result on the public test set. When the challenge endedl Jun RBF kernel
1, 2017, the performance of one attempt selected by each team NC MCI cMCI AD
was evaluated on the private test set. Based on the restiits of
. NC 29 20 7 0
online part of the challenge, two attempts were selectedi-for MCl 5 6 10 0
nal evaluation and ranking based on the Challenge testaet, i
cMCI 6 11 17 4
base on the real test data only. The labels of the test dat wer
- . : AD 0 3 6 36
released to the participants post-challenge for use in staimi

writing.
CA than the mean CA of the individual SVMs in the ensemble
3. Results and discussion in all cases except for 3-class CA using an RBF kernel, which
- showed similar performance, demonstrating the benefit of en
3.1. Classification results sembling. The CAs for the 3-class problem containing thetjoi

CAs were computed for the ArtificiaChallenge test set MCIl and cMCI classes were more than 12 percent points higher
and for the Challenge test set. Both the performance of theompared with the 4-class problem considered in the ctgalen
ensemble SVM and of the individual SVMs in the ensembleThis gap would likely increase had the SVMs been trained di-
were evaluated. In the case of the individual SVMs, the meamectly for the 3-class problem.
and standard deviation of the CAs of the individual SVMs were  The performance of the ensembles on the Challenge learn-
computed. The CA for the 3-class classification problem of ing set was evaluated using the out-of-bag estimate of the CA
NC vs. MCI vs. AD, obtained by joining the MCI and cMCI (Kuncheva, 2014), and it was 70.8% for both kernel types. In
classifications, was also evaluated to enable comparistin wicomparison with the Challenge test set CAs (Table 3, 55.6%
previous challenges that considered this 3-class prolizon(  and 55.0%), there were more than 15 percentage pdiigri
et al., 2015; Simmons et al., 2014l the CAs are reported in  ences, which could indicate that training was not saturatet

Table 3. that performance could be increased by enlarging the trgini
The CAs for the test set including the artificial data weredata.
markedly lower than for the test set containing only the deda The 3-class CAs between 65.6% and 68.8% were substan-

across all classifiers, indicating a systematitiedlence between tially higher than the CAs reported in the Computer-Aided Di
the artificial and real data. The ensemble SVM achieved higheagnosis of Dementia (CADDementia) challenge where the-high
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Figure 2: Number of features selected in the 25 SFS proceduties ensemble

construction. Figure 3: Specific features selected in the 25 SFS proceduthse ensemble

construction.

est CA was 63.0% (Bron etal., 2015), and the Alzheimer’s Disya5ejine MMSE, which was apriori specified to always be in-
ease Big Data (ADBD) DREAM challenge #1 Where the high-cluded in the feature set, was counted among these. Thedeatu
est CA was 60.2% (Simmons et al., 2014). This was likely bexet size distributions were relatively similar for the twulg
cause MMSE was included as a feature in the present challenggsnels with a tendency of set sizes between 3 and 6 features.
Indeed, disregarding MMSE and re-running the algorithms rétne RBF kernel resulted in a feature set size of 2 in some cases
sulted in 3-class CAs of 61.9% and 62.5% for the linear and th§,hereas the smallest size for the linear kernel was 3. Thesar
RBF SVM ensembles. Another factor was likely that trainingfeatre set size of 8 appeared in one case for the linearlkerne
and test set originated fromfgrent cohorts in the two men- Left presubiculum volume was the most frequently selected
tioned challenges (Simmons et al., 2014; Bron et al., 2005).  featyre followed by the right subiculum volume, and both fea
a recent study by Zhu et al. (2016) that used both MRI anqy,qes \ere selected for both kernels (Figure 3). Less fratiue
positron emission tomography image features, a within-ADN gejected MRI features included other hippocampal subnagio
3-class CA of 73.0% and a 4-class CA of 62.0% were reporteqs|ymetric measures, the right hippocampal volume and the
for the same classification problems as considered in tleepte \,ojume of the neighboring right inferior lateral ventricleft
challenge and study. temporal pole cortical thickness, and left pericalcariogical
Confusion matrices were computed for the Challenge tesfickness. Note that baseline MMSE was always included apri
set using the classifications of the ensemble SVMs (Table 4k anq that its 100% occurrence therefore was not a result of
The (mis-)classification tendencies were the same for i®h t the SES procedure. Figure 3 does not depict features the were
linear and the RBF kernel. NC and AD were perfectly sep-sgjected less than 3 times. A total of 41 and 3dedént fea-

arated, AD was almost perfectly classified and only in a fewy,res were selected once for the linear and RBF kernel, and 8
cases misclassified as cMCI, NC was in approximately 30% of 14 2 were selected twice.

the cases misclassified as either MCl or cMCI, and the MCland  pq expected, measurements of the hippocampus were im-
cMCI classes were badly classified with MCI true positivefra portant features for the considered classification problis
tions of 20% and 15% for the linear and RBF kernel and CMCIWe” known from pathological studies that the hippocampus i
true positive fractions of 42.5% for both kernels. The latge sgected in AD (West et al., 1994; Braak and Braak, 1997), and
class overlaps were between NC and MCI, and between MGlinnocampal volumetry has previously demonstrated bath se
and cMCI. The most comparable algorithms (SVM with Volu- 5 ation between NC, MCI, and AD (Convit et al., 1997) and
metric or volumetric and cortical thickness MRI featuresjie  panveen MCI and cMCI (Jack et al., 1999). Moreover, the
CADDementia challenge also showed a tendency of good disresybiculunsubiculum is the subregion of the hippocampus
crimination between NC and AD, and more misclassificationgynere As-amyloid protein, a major pathological hallmark of
between NC and MCI than between MCI and AD (Bron et al. ap s deposited the earliest in AD (Braak and Braak, 1997),
2015). and this part of the hippocampusfiars significant neuronal
loss in AD (West et al., 1994) In line with the high frequency
3.2. Selected features of selection of the presubiculysubiculum in this study, a pre-
The number of features selected in the 25 SFS procedures
in the ensemble construction were plotted (Figure 2). Nudé t

INote that there are flerences in the subregion definitions between
FreeSurfer (Van Leemput et al., 2009) and the definitions ist\&eal. (1994);
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vious study using FreeSurfer hippocampal subregion volumemethods, and they all used bagging without replacement. The
try found the presubiculum and subiculum to best discrit@ina following five feature subset methods were evaluated:

NC vs. AD and NC vs. MCI, and that these subregions were )

the only ones that could discriminate MCI vs. AD (Carlesimo ~ ® All features:Using all 128 features.

etal., 2015). ¢ Random subspacé&andom subspace using 128= 64

In addition to the subtle information captured by hippocam- features (Ho, 1998).
pal subregional volumetry, other types of hippocampusifesat '
that target subtle information could be considered in aanabt e SFS:The method used in the challenge.

to improve the classification performance. For example, the _ . _
shape of the hippocampus (Gerardin et al., 2009; Achterberg ® SFS10:The method used in the challenge with the ad-

etal., 2014) or textural patterns of the intensities withia hip- ditional requirement that at least 10 features should be
pocampus (Chincarini et al., 2011; Sgrensen et al., 20aéhel selected. In cases when no candidate features improved
CADDementia challenge, a mix of volumetry, cortical thick- the CA from the previous iteration of the SFS procedure,
ness measures, and shape/anihtensity texture was used by the best candidate was still added to the set of selected
all of the top-three performing algorithms (Bron et al., 301 features.

In the ADBD DREAM challenge #1, shape features were pro-
vided alongside volumetric and cortical thickness measfoe
many brain regions (Simmons et al., 2014). However, it was
not reported which of these features were used by the winnin§FS10 and SFS20 were investigated because it was observed
algorithm. that using all 128 features worked better than using SFShéor t

linear SVM, indicating that the SFS was stuck in local minjma
3.3. Post-challenge analysis of feature subset methods and eand enforcing a larger feature set size may overcome some of

semble size these.

The Challenge test set labels, released post-challenge, we  The results are shown in Figure 4. The curve for RBF SVM
used to investigate thefect of diferent feature subset methods using all features, that peaked at 43.1% for 15 base classifie
within the algorithm as a function of the number of base claswas not shown for better visualization of the other curves. |
sifiers in the ensemble. A range of, [5,...,65] SVMs was  creasing the number of base classifiers would only have bene-
considered. For each number of base classifiers, 15 ensemblged marginally for the method used in the challenge (i.e. fo
were constructed usingfiiérent Challenge learning set permu- SFS). However, using another feature subset method wouéd ha
tations and applied to the Challenge test set, and the mean Bbth random subspace with the heuristic of using 50% of the
the resulting 15 CAs was computed . The same learning sdeatures, enforcing at least 10 or 20 selected features 8) SF
permutations were used for all the investigated featursetub or simply using all available features, showed improvedaqrer

mance for the linear SVM ensemble, and for the RBF ensemble,
the presubiculum in FreeSurfer roughly corresponds to tlécalum in West enforcing at Ie_ast 20 featL.”es selected in SFS. Impro‘_/e@perf
et al. (1994), and part of the subiculum in FreeSurfer opariaith CA1 in m_ance' The hlghest obtained CAs were Obta'n?fj using SFS20,
West et al. (1994). with 59.1% for the linear kernel at 55 base classifiers andi%8.

e SFS20:Same as SFS10, but with the requirement that at
least 20 features should be selected.




for the RBF kernel at 65 base classifiers. These resultsreequi Therapeutics. The Canadian Institutes of Health Research i
confirmation in an independent dataset. providing funds to support ADNI clinical sites in Canadai-Pr
The clear benefit of enforcing a minimum amount of fea-vate sector contributions are facilitated by the Foundafar
tures selected in the SFS procedure indicated that somk locghe National Institutes of Health (www.fnih.org). The grem
minima was overcome by considering several features simult organization is the Northern California Institute for Raszh
neously during the selection step. Feature selection appes  and Education, and the study is coordinated by the Alzhésmer
designed to handle such situations, such as floating seatth m Therapeutic Research Institute at the University of Sauthe
ods (Pudil et al., 1994), may further improve performandbwi California. ADNI data are disseminated by the Laboratony fo
out incurring a significant increase in the computationah€o Neuro Imaging at the University of Southern California.
plexity of the method.

It is further noted that the ensemble instance used for ﬁnaﬂ?eferences
ranking in the challenge, which was dependent on the partic-
ular Challenge learning set permutations used, appearld to Achterberg, H.C., van der Lijn, F., den Heijer, T., VernodljW., Ikram, M.A.,
among the more unlikely cases for the RBF kernel. The RBF Niessen, W.J., de Bruijne, M., 2014. Hippocampal shape igigtree for
ensemble Challenge test set CA of 55.0 % was below the cor- m de‘g’g'ozp?fggftzg;feme”t'a in & normal, elderly populationmtirain
responding estimated mean CA across 15 ensembles of size Zéuila?pc., Westman, E., Muehlboeck, J.S., Mecocci, P.|aelB., Tsolaki,

SVMs and outside the 95% confidence interval. M., Kloszewska, I., Soininen, H., Lovestone, S., Spenger,Simmons,
A., Wahlund, L.O., 2013. Dierent multivariate techniques for automated
classification of MRI data in Alzheimer’s disease and mild dtgaimpair-

4. Conclusions ment. Psychiatry research 212, 89-98.
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