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Abstract

Background:The International Challenge for Automated Prediction of MCI from MRI Data offered independent, standardized
comparison of machine learning algorithms for multi-classclassification of normal control (NC), mild cognitive impairment (MCI),
converting MCI (cMCI), and Alzheimer’s disease (AD) using brain imaging and general cognition.
New Method:We proposed to use an ensemble of support vector machines (SVMs) that combined bagging without replacement
and feature selection. SVM is the most commonly used algorithm in multivariate classification of dementia, and it was therefore
valuable to evaluate the potential benefit of ensembling this type of classifier.
Results: The ensemble SVM, using either a linear or a radial basis function (RBF) kernel, achieved multi-class classification
accuracies of 55.6% and 55.0% in the challenge test set (60 NC, 60 MCI, 60 cMCI, 60 AD), resulting in a third place in the
challenge. Similar feature subset sizes were obtained for both kernels, and the most frequently selected MRI features were the
volumes of the two hippocampal subregions left presubiculum and right subiculum. Post-challenge analysis revealed thatenforcing
a minimum number of selected features and increasing the number of ensemble classifiers improved classification accuracy up to
59.1%
Comparison with Existing Method(s):The ensemble SVM outperformed single SVM classifications consistently in the challenge
test set.
Conclusions: Ensemble methods usingbagging and feature selectioncan improve the performance of the commonly applied
SVM classifier in dementia classification. This resulted in competitive classification accuracies in the InternationalChallenge for
Automated Prediction of MCI from MRI Data.

Keywords: Alzheimer’s disease; computer-aided diagnosis; ensemblesupport vector machine; mild cognitive impairment;
mini-mental state examination; structural MRI

1. Introduction

The combination of image analysis and machine learning to
construct structural magnetic resonance imaging (MRI) biomark-
ers of dementia is an active research area (Falahati et al., 2014;
Rathore et al., 2017; Arbabshirani et al., 2017). Many differ-
ent methods have been proposed and evaluated with promising
results, however, there is a need for standardized comparisons.
Several studies have empirically compared different methods
(Cuingnet et al., 2011; Aguilar et al., 2013; Sabuncu et al.,
2015) providing some insight as to which MRI features and/or
which multivariate methods are beneficial. More recently, chal-
lenges in dementia classification have been organized (Sim-
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mons et al., 2014; Bron et al., 2015) providing diverse, indepen-
dent, standardized comparisons. The International Challenge
for Automated Prediction of MCI from MRI Data (Sarica et al.,
2016), henceforth referred to as “the challenge”, offered an op-
portunity to compare different machine learning methods using
precomputed MRI features and mini-mental state examination
(MMSE) scores supplied by the challenge organizers. The chal-
lenge relied on data from the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) (Petersen et al., 2010), and a notablechar-
acteristic, in comparison with previous challenges, were the
multi-class classification of normal control (NC), Alzheimer’s
disease (AD), mild cognitive impairment that did not convert
to AD at follow-up (MCI), and MCI that converted to AD at
follow-up (cMCI) as evaluation metric.

This paper presents our algorithm submitted for the chal-
lenge. The algorithm used an ensemble of support vector ma-
chines (SVMs), i.e., a combination of several differently trained
SVMs. An SVM is the most commonly used multivariate method
in MRI-based dementia classification (Falahati et al., 2014; Rathore
et al., 2017; Arbabshirani et al., 2017), and the classifier has
also been widely and successfully applied in studies using data
from the ADNI cohort (Weiner et al., 2015). Ensemble clas-
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Table 1: Characteristics of the challenge datasets.

n Age Sex MMSE score
mean (SD) % male mean (SD)

Challenge learning set
NC 60 72.3 (5.7) 50.0 29.1 (1.1)
MCI 60 72.2 (7.5) 46.7 28.3 (1.6)
cMCI 60 73.0 (7.3) 58.3 27.2 (1.9)
AD 60 74.8 (7.4) 48.3 23.4 (2.1)

Challenge test set
NC 40 74.9 (5.6) 45.0 29.0 (1.1)
MCI 40 72.4 (8.1) 57.5 27.6 (1.9)
cMCI 40 71.7 (6.3) 62.5 27.6 (1.8)
AD 40 73.1 (8.2) 57.5 22.7 (2.0)

sification methods such as the ones that use different subsets
of the data, e.g., bagging (Breiman, 1996), or different feature
subsets, e.g., the random subspace method (Ho, 1998), may in
many cases improve classification performance over a single
classifier (Kuncheva, 2014), and ensemble SVMs have previ-
ously been successfully applied for dementia classification us-
ing different types of MRI measurements and ensemble meth-
ods (Shen et al., 2012; Chincarini et al., 2011; Varol et al.,2012;
Simpson et al., 2013).

The proposed ensemble method was inspired by the random
forest algorithm that uses a combination of bagging and random
feature subsets (Breiman, 2001). In particular, we combined
bagging without replacement with sequential forward feature
selection (SFS) to obtain feature subsets optimal for the SVM
classifier. To the best of our knowledge, this is a novel way of
constructing the SVM ensemble. Previous feature subset en-
semble SVM studies, both within MRI-based dementia classi-
fication and within other application areas, were either purely
feature subset-based using some form of feature selection or
ranking (Chincarini et al., 2011; Varol et al., 2012), random
subspace (Waske et al., 2010; Xia et al., 2016), or a combination
of selection/ranking and random subspace (Nanni, 2006; Liene-
mann et al., 2007; Kuncheva et al., 2010; Chen et al., 2014),
or combined bagging and feature subsets either using ranking
(Shen et al., 2012), random subspace (Tao et al., 2006) or recur-
sive feature elimination based on linear SVM weights (Anaissi
et al., 2016). The last is non-trivial to extend to non-linear SVM
kernels.

We experimented with using both a linear kernel and a ra-
dial basis function (RBF) kernel in the SVMs, and these two
configurations were submitted for the challenge. A detailed
analyses of the classification results and of the selected feature
subsets is presented for the ensembles submitted to the chal-
lenge, in addition to a post-challenge analysis of the perfor-
mance of differentfeature subset methods and ensemble sizes.

2. Materials and methods

2.1. Data
The challenge used data from the Alzheimer’s Disease Neu-

roimaging Initiative (ADNI) database (adni.loni.usc.edu). The

ADNI was launched in 2003 as a public-private partnership, led
by Principal Investigator Michael W. Weiner, MD. The primary
goal of ADNI has been to test whether MRI, positron emission
tomography, other biological markers, and clinical and neu-
ropsychological assessment can be combined to measure the
progression of MCI and early AD. For up-to-date information,
see www.adni-info.org.

The challenge organizers selected a total of 400 subjects
from ADNI; 100 NC, 100 MCI, 100 cMCI, and 100 with AD.
The subjects were split in a learning set with 240 observations
and a test set with 160 observations (Table 1). The subject se-
lection and data set definition procedures are described on the
challenge website (Sarica et al., 2016). Information abouttime
to follow-up diagnosis, used to determine MCI or cMCI, was
not provided for the challenge data.

2.2. Features

The available features in the challenge consisted of 426 T1-
weighted structural MRI measures computed using the cross-
sectional pipeline of the FreeSurfer software package (version
5.3) (Fischl and Dale, 2000; Fischl et al., 2002), the age and
sex of the subjects, and their baseline MMSE score. The chal-
lenge organizers performed all MRI processing and made the
resulting MRI measures available to the challenge participants.
Among the available MRI measures, we selected 33 brain volu-
metric measures, 14 hippocampal subregional volumetric mea-
sures, 66 regional cortical thickness measures, and the volume
of white matter hypointensities. In addition, we computed 10
lobar cortical thickness measures as the mean of the individual
regional cortical measures representing each lobe according to
the grouping defined by Schmansky et al. (2017). See Table 2
for a detailed specification of the 124 MRI features considered
in this study.

The supplied hippocampal subregional volumetric measures
and regional cortical thickness measures contained unrealisti-
cally large values in some cases. An automatic MRI feature
pre-processing step was therefore implemented to bring theor-
der of magnitude to a realistic range (e.g., such that a mean
cortical thickness of 2000.0 mm became 2.0 mm). This step
was performed prior to the computation of the 10 lobar cortical
thickness measures.

FreeSurfer’s estimate of the intra-cranial volume (ICV) was
also provided among the MRI measurements, and it was in-
cluded in the feature vector to allow the algorithm to automati-
cally select it if beneficial.

The MMSE score was part of the information used to obtain
the clinical diagnosis in ADNI (Petersen et al., 2010) whichin
turn served as the label in the challenge. We therefore, in ad-
dition to the raw MMSE score, made an encoded version using
the ADNI thresholds as follows: MMSE< 24 : 0 (we know this
an AD subject); MMSE≥ 24 and MMSE≤ 26 : 1 (this is a gray
zone); MMSE> 26 : 2 (we know this is not an AD subject).

The final feature vector was 128-dimensional and consisted
of the 124 MRI features, MRI ICV, sex, baseline MMSE score,
and encoded baseline MMSE score.
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Table 2: Overview of MRI features.

MRI feature category n ROI(s)

Brain volumetry 33

l/r accumbens area, l/r amygdala, l/r caudate, l/r cerebellum cortex, l/r choroid plexus,
anterior/central/mid anterior/mid posterior/posterior corpus callosum,
l/r hippocampus, optic chiasm, l/r pallidum, l/r putamen, l/r thalamus proper,
l/r ventral DC, 3rd ventricle, 4th ventricle; l/r inferior lateral ventricle,
l/r lateral ventricle, whole brain

Hippocampal sub-
regional volumetry

14
l/r CA1, l/r CA2+CA3, l/r CA4+dentate gyrus, l/r fimbria, l/r hippocampal fissure,
l/r presubiculum, l/r subiculum

Cortical lobar thickness 10 l/r cingulate cortex, l/r frontal lobe, l/r occipital lobe, l/r parietal lobe, l/r temporal lobe

Cortical regional thickness 66

l/r banks of the superior temporal sulcus, l/r caudal anterior cingulate,
l/r caudal middle frontal, l/r cuneus, l/r entorhinal, l/r fusiform, l/r inferior parietal,
l/r inferior temporal, l/r isthmus cingulate, l/r lateral occipital, l/r lateral orbitofrontal,
l/r lingual, l/r medial orbitofrontal, l/r middle temporal, l/r parahippocampal,
l/r paracentral, l/r pars opercularis, l/r pars orbitalis, l/r pars triangularis, l/r pericalcarine,
l/r postcentral, l/r posterior cingulate, l/r precentral, l/r precuneus,
l/r rostral anterior cingulate, l/r rostral middle frontal, l/r superior frontal,
l/r superior parietal, l/r superior temporal, l/r supramarginal, l/r frontal pole,
l/r temporal pole, l/r transverse temporal

White matter
1 White matter

hypointensities

Abbreviations: l/r; left/right.

2.3. Algorithm
The algorithm consisted of an ensemble of SVMs (Cortes

and Vapnik, 1995), each trained using different random sub-
samples of the Challenge learning set, and each relying on a
different subset of the features according to a sequential for-
ward feature selection (SFS) procedure (Jain et al., 2000).The
ensemble classification was performed using majority voting
among the SVMs. Subject age was accounted for using an age-
dependent normalization of the MRI features, and MMSE was
always included in the feature set of each individual SVM.

2.3.1. Accounting for age
Age was accounted for using a previously proposed normal-

ization procedure (Sørensen et al., 2017) in which each MRI
feature was z-score transformed using a mean and standard de-
viation that were dependent on the age of the subject. Contrary
to Sørensen et al. (2017), we did not perform the normaliza-
tion per class in order to avoid a four-fold increase of candidate
MRI features for feature selection. The normalization parame-
ters were estimated using the entire Challenge learning set, and
were subsequently applied to all MRI features in the Challenge
learning and Challenge test sets.

2.3.2. Feature selection and SVM training
An SFS procedure with the multi-class (NC vs. MCI vs.

cMCI vs. AD) classification accuracy (CA) of an SVM as ob-
jective function was used to select the optimal feature subset
among the candidate features.The MMSE score was always
included in the feature subset because it contributed to theclin-
ical diagnosis of the ADNI subjects (Petersen et al., 2010) and

was therefore expected to carry important discriminative infor-
mation. The SFS procedure was applied by splitting the Chal-
lenge learning set stratified by class label into a training and val-
idation set, and, based on the current feature subset, the SVM
was trained using the training set while the validation set was
used to compute the objective function (i.e., the multi-class CA
of SVM). After splitting, both training set and validation set
features were z-score normalized using the meansµ and stan-
dard deviationsσ of the training set features to ensure that MRI
features and non-MRI features were in the same range. SVM
training at each stage in the SFS procedure involved determi-
nation of hyper-parameters using grid search in an inner cross-
validation loop, followed by training of the SVM using the op-
timal hyper-parameter values and the entire training set. We
denote the final SVM, trained using the optimal feature subset
according to the SFS procedure,f . The associated mapping
from candidate feature set to optimal feature subset is denoted
ass.

2.3.3. Ensemble construction
The individual classifiers in the ensemble were indepen-

dently trained by repeatedly running the full SFS procedurede-
scribed in Section 2.3.2 using random permutations of the Chal-
lenge learning set. This effectively corresponded to training of
each SVM using a random subsample of the Challenge learn-
ing set without replacement and an optimal feature subset, and
it resulted in a set of trained SVMs{ fi}, associated mappings
to feature subsets{si}, and vectors of means{µi} and standard
deviations{σi} of the training set features.The ensemble con-
struction procedure is illustrated in Figure 1.
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Figure 1: Illustration of the ensemble SVM construction which combinedbagging without replacement with SFS for feature subset selection. A: the learning set
(rows as observations, columns as features) was split at random in two non-overlapping halves stratified by class label, atraining set and a validation set. The
training set feature meansµ and standard deviationsσ were used for z-score normalization of both the training and the validation sets. B: a full SFS procedure
was run using the z-score normalized training and validationsets resulting in a mappings from the full feature set to a feature subset, and an associated trained
multi-class SVMf that used that feature subset. C: at each node of the SFS search path in the graph of possible feature combinations, a multi-class SVM was trained
using the training set, and the multi-class CA of the trained SVM applied to score the validation set provided the SFS objective function. In the illustrated example,
the SFS procedure terminated at the first feature in the first split (the search path is illustrated as a dashed gray line, thedata column for the selected feature is gray,
and the vertex at which the SFS procedure terminated is marked by a thick black boundary), and it terminated at the combinationof the first and last features in
theNth split. The final ensemble consisted of the feature subset mappings{s1, . . . , sn} and associated trained SVMs{ f1, . . . , fn}, and the training set feature means
{µ1, . . . ,µn} and standard deviations{σ1, . . . ,σn} for normalization.

The combination of data subsets and feature subsets in en-
semble SVM construction was inspired by the random forest al-
gorithm (Breiman, 2001). However, the proposed method used
bagging without replacement for data subset selection and SFS
for optimal feature subset selection. A general empirical study
demonstrated that bagging without replacement performed bet-
ter than with replacement in situations with imbalanced and
noisy data (Khoshgoftaar et al., 2011). The data is balanced
on this study, however, the classes are noisy due to the use of
clinical labels and lack of definite ground truth, and due to the
clinical overlap between the classes. The use of SFS for fea-
ture subset selection instead of random selection allows for fea-
ture subsets that are optimal for the SVM while still providing
relatively fast ensemble construction in comparison with using
computationally more involved feature selection algorithms.

2.3.4. Ensemble classification
The final classification of a feature vectorx from the Chal-

lenge test set was obtained using majority voting among the
SVMs in the ensemble

fensemble(x) = argmax
ω j

N
∑

i=1

g( fi(si((x − µi) ⊘ σi)), ω j),

whereN is the size of the ensemble,ω j is the jth class label,⊘
denotes element-wise division, andg(·, ·) is an indicator func-
tion defined as

g(y, ω) =

{

1 if y = ω
0 if y , ω

,

wherey is the predicted label.

2.4. Experimental setup

We used the LIBSVM library (version 3.22) (Chang and
Lin, 2011) for SVM training and classification. This meant
that the multi-class classification was performed using the“one-
against-one” approach.The ensemble method, including the
SFS procedure, was our own in-house Matlab (R2015b) code.
The following parameters and settings were used in the experi-
ments:

• SVM kernel:{linear, RBF}

• SVM hyper-parameter grid:

– C ∈ {2−3,2−1, . . . ,23}

– γ ∈ {2−5,2−3, . . . ,25} (only for the RBF kernel)

• Number of inner cross-validation folds for SVM hyper-
parameter search: 3

• Number of SVMs in the ensemble:N = 25

• Proportion of observations per class in training/ valida-
tion set in the SFS procedure: 75%/ 25%

The random number generator for Challenge learning set per-
mutation was initialized using the same random seed for each
of the two constructed ensembles (corresponding to using either
the linear or the RBF kernel) for comparability.

4



Table 3: Test set classification accuraciesand true positive fractions. The accuracies used for final ranking in the challenge are marked in bold font.

4-class CAa 3-class CAb TPFNC TPFMCI TPFcMCI TPFAD

A+C C A+C C C C C C

Ensemble SVM
linear 37.0 55.6 50.6 68.8 70.0 20.0 42.5 90.0
RBF 35.6 55.0 48.0 68.1 72.5 15.0 42.5 90.0

Individual SVMsc

linear 35.4 (1.4) 54.3 (2.3) 48.6 (2.1) 67.4 (2.3)65.7 (6.9) 23.0 (6.4) 40.6 (7.5) 87.7 (3.7)
RBF 35.1 (1.4) 52.9 (2.0) 48.3 (2.6) 65.6 (3.0)63.3 (7.6) 22.0 (8.3) 40.5 (7.1) 85.6 (3.6)

Abbreviations: A+C, Artificial+Challenge test set; C, Challenge test set;CA, classification accuracy; TPFi , true
positive fraction for theith class.
a NC vs. MCI vs. cMCI vs. AD.
b NC vs. (MCI∪ cMCI) vs. AD.
c Mean (SD) classification accuracy of the 25 individual SVMs in the ensemble.

2.5. Challenge structure

The challenge organizers generated an additional 340 arti-
ficial test observations that were joined with the real test obser-
vations in the Challenge test set to form a combined test set of
500 observations. This combined test set was used in the online
part of the competition that was hosted on the Kaggle competi-
tion platform (Sarica et al., 2016). We term this combined set
the Artificial+Challenge test set. The Artificial+Challenge test
set was split in half in a public and a private test set. Duringthe
online part of the challenge between December 21, 2016 and
June 1, 2017, teams could submit an attempt each day and get
the result on the public test set. When the challenge ended June
1, 2017, the performance of one attempt selected by each team
was evaluated on the private test set. Based on the results ofthe
online part of the challenge, two attempts were selected forfi-
nal evaluation and ranking based on the Challenge test set, i.e.,
base on the real test data only. The labels of the test data were
released to the participants post-challenge for use in manuscript
writing.

3. Results and discussion

3.1. Classification results

CAs were computed for the Artificial+Challenge test set
and for the Challenge test set. Both the performance of the
ensemble SVM and of the individual SVMs in the ensemble
were evaluated. In the case of the individual SVMs, the mean
and standard deviation of the CAs of the individual SVMs were
computed. The CA for the 3-class classification problem of
NC vs. MCI vs. AD, obtained by joining the MCI and cMCI
classifications, was also evaluated to enable comparison with
previous challenges that considered this 3-class problem (Bron
et al., 2015; Simmons et al., 2014).All the CAs are reported in
Table 3.

The CAs for the test set including the artificial data were
markedly lower than for the test set containing only the realdata
across all classifiers, indicating a systematic difference between
the artificial and real data. The ensemble SVM achieved higher

Table 4: Challenge test set confusion matrices for the ensemble SVMs. Rows
correspond to predicted class and columns correspond to the true class.

Linear kernel

NC MCI cMCI AD

NC 28 16 6 0
MCI 7 8 11 0
cMCI 5 10 17 4
AD 0 6 6 36

RBF kernel

NC MCI cMCI AD

NC 29 20 7 0
MCI 5 6 10 0
cMCI 6 11 17 4
AD 0 3 6 36

CA than the mean CA of the individual SVMs in the ensemble
in all cases except for 3-class CA using an RBF kernel, which
showed similar performance, demonstrating the benefit of en-
sembling. The CAs for the 3-class problem containing the joint
MCI and cMCI classes were more than 12 percent points higher
compared with the 4-class problem considered in the challenge.
This gap would likely increase had the SVMs been trained di-
rectly for the 3-class problem.

The performance of the ensembles on the Challenge learn-
ing set was evaluated using the out-of-bag estimate of the CA
(Kuncheva, 2014), and it was 70.8% for both kernel types. In
comparison with the Challenge test set CAs (Table 3, 55.6%
and 55.0%), there were more than 15 percentage point differ-
ences, which could indicate that training was not saturatedand
that performance could be increased by enlarging the training
data.

The 3-class CAs between 65.6% and 68.8% were substan-
tially higher than the CAs reported in the Computer-Aided Di-
agnosis of Dementia (CADDementia) challenge where the high-
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Figure 2: Number of features selected in the 25 SFS proceduresin the ensemble
construction.

est CA was 63.0% (Bron et al., 2015), and the Alzheimer’s Dis-
ease Big Data (ADBD) DREAM challenge #1 where the high-
est CA was 60.2% (Simmons et al., 2014). This was likely be-
cause MMSE was included as a feature in the present challenge.
Indeed, disregarding MMSE and re-running the algorithms re-
sulted in 3-class CAs of 61.9% and 62.5% for the linear and the
RBF SVM ensembles. Another factor was likely that training
and test set originated from different cohorts in the two men-
tioned challenges (Simmons et al., 2014; Bron et al., 2015).In
a recent study by Zhu et al. (2016) that used both MRI and
positron emission tomography image features, a within-ADNI
3-class CA of 73.0% and a 4-class CA of 62.0% were reported
for the same classification problems as considered in the present
challenge and study.

Confusion matrices were computed for the Challenge test
set using the classifications of the ensemble SVMs (Table 4).
The (mis-)classification tendencies were the same for both the
linear and the RBF kernel. NC and AD were perfectly sep-
arated, AD was almost perfectly classified and only in a few
cases misclassified as cMCI, NC was in approximately 30% of
the cases misclassified as either MCI or cMCI, and the MCI and
cMCI classes were badly classified with MCI true positive frac-
tions of 20% and 15% for the linear and RBF kernel and cMCI
true positive fractions of 42.5% for both kernels. The largest
class overlaps were between NC and MCI, and between MCI
and cMCI. The most comparable algorithms (SVM with volu-
metric or volumetric and cortical thickness MRI features) in the
CADDementia challenge also showed a tendency of good dis-
crimination between NC and AD, and more misclassifications
between NC and MCI than between MCI and AD (Bron et al.,
2015).

3.2. Selected features

The number of features selected in the 25 SFS procedures
in the ensemble construction were plotted (Figure 2). Note that
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Figure 3: Specific features selected in the 25 SFS proceduresin the ensemble
construction.

baseline MMSE, which was apriori specified to always be in-
cluded in the feature set, was counted among these. The feature
set size distributions were relatively similar for the two SVM
kernels with a tendency of set sizes between 3 and 6 features.
The RBF kernel resulted in a feature set size of 2 in some cases
whereas the smallest size for the linear kernel was 3. The largest
feature set size of 8 appeared in one case for the linear kernel.

Left presubiculum volume was the most frequently selected
feature followed by the right subiculum volume, and both fea-
tures were selected for both kernels (Figure 3). Less frequently
selected MRI features included other hippocampal subregional
volumetric measures, the right hippocampal volume and the
volume of the neighboring right inferior lateral ventricle, left
temporal pole cortical thickness, and left pericalcarine cortical
thickness. Note that baseline MMSE was always included apri-
ori and that its 100% occurrence therefore was not a result of
the SFS procedure. Figure 3 does not depict features the were
selected less than 3 times. A total of 41 and 34 different fea-
tures were selected once for the linear and RBF kernel, and 8
and 2 were selected twice.

As expected, measurements of the hippocampus were im-
portant features for the considered classification problem. It is
well known from pathological studies that the hippocampus is
affected in AD (West et al., 1994; Braak and Braak, 1997), and
hippocampal volumetry has previously demonstrated both sep-
aration between NC, MCI, and AD (Convit et al., 1997) and
between MCI and cMCI (Jack et al., 1999). Moreover, the
presubiculum/subiculum is the subregion of the hippocampus
where Aβ-amyloid protein, a major pathological hallmark of
AD, is deposited the earliest in AD (Braak and Braak, 1997),
and this part of the hippocampus suffers significant neuronal
loss in AD (West et al., 1994).1 In line with the high frequency
of selection of the presubiculum/subiculum in this study, a pre-

1Note that there are differences in the subregion definitions between
FreeSurfer (Van Leemput et al., 2009) and the definitions in West et al. (1994);
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Figure 4: Challenge test set CAfor different feature subset methodsas a function of the number of SVMs in the ensembles. Computed as the mean of 15 ensembles.
Error bars mark the 95% confidence interval.(a) Linear kernel. (b) RBF kernel.

vious study using FreeSurfer hippocampal subregion volume-
try found the presubiculum and subiculum to best discriminate
NC vs. AD and NC vs. MCI, and that these subregions were
the only ones that could discriminate MCI vs. AD (Carlesimo
et al., 2015).

In addition to the subtle information captured by hippocam-
pal subregional volumetry, other types of hippocampus features
that target subtle information could be considered in an attempt
to improve the classification performance. For example, the
shape of the hippocampus (Gerardin et al., 2009; Achterberg
et al., 2014) or textural patterns of the intensities withinthe hip-
pocampus (Chincarini et al., 2011; Sørensen et al., 2016). In the
CADDementia challenge, a mix of volumetry, cortical thick-
ness measures, and shape and/or intensity texture was used by
all of the top-three performing algorithms (Bron et al., 2015).
In the ADBD DREAM challenge #1, shape features were pro-
vided alongside volumetric and cortical thickness measures for
many brain regions (Simmons et al., 2014). However, it was
not reported which of these features were used by the winning
algorithm.

3.3. Post-challenge analysis of feature subset methods and en-
semble size

The Challenge test set labels, released post-challenge, were
used to investigate the effect of different feature subset methods
within the algorithm as a function of the number of base clas-
sifiers in the ensemble. A range of [5,15, . . . ,65] SVMs was
considered. For each number of base classifiers, 15 ensembles
were constructed using different Challenge learning set permu-
tations and applied to the Challenge test set, and the mean of
the resulting 15 CAs was computed . The same learning set
permutations were used for all the investigated feature subset

the presubiculum in FreeSurfer roughly corresponds to the subiculum in West
et al. (1994), and part of the subiculum in FreeSurfer overlaps with CA1 in
West et al. (1994).

methods, and they all used bagging without replacement. The
following five feature subset methods were evaluated:

• All features:Using all 128 features.

• Random subspace:Random subspace using 128/2 = 64
features (Ho, 1998).

• SFS:The method used in the challenge.

• SFS10:The method used in the challenge with the ad-
ditional requirement that at least 10 features should be
selected. In cases when no candidate features improved
the CA from the previous iteration of the SFS procedure,
the best candidate was still added to the set of selected
features.

• SFS20:Same as SFS10, but with the requirement that at
least 20 features should be selected.

SFS10 and SFS20 were investigated because it was observed
that using all 128 features worked better than using SFS for the
linear SVM, indicating that the SFS was stuck in local minima,
and enforcing a larger feature set size may overcome some of
these.

The results are shown in Figure 4. The curve for RBF SVM
using all features, that peaked at 43.1% for 15 base classifiers,
was not shown for better visualization of the other curves. In-
creasing the number of base classifiers would only have bene-
fited marginally for the method used in the challenge (i.e. for
SFS). However, using another feature subset method would have.
Both random subspace with the heuristic of using 50% of the
features, enforcing at least 10 or 20 selected features in SFS,
or simply using all available features, showed improved perfor-
mance for the linear SVM ensemble, and for the RBF ensemble,
enforcing at least 20 features selected in SFS improved perfor-
mance. The highest obtained CAs were obtained using SFS20,
with 59.1% for the linear kernel at 55 base classifiers and 58.4%
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for the RBF kernel at 65 base classifiers. These results require
confirmation in an independent dataset.

The clear benefit of enforcing a minimum amount of fea-
tures selected in the SFS procedure indicated that some local
minima was overcome by considering several features simulta-
neously during the selection step. Feature selection approaches
designed to handle such situations, such as floating search meth-
ods (Pudil et al., 1994), may further improve performance with-
out incurring a significant increase in the computational com-
plexity of the method.

It is further noted that the ensemble instance used for final
ranking in the challenge, which was dependent on the partic-
ular Challenge learning set permutations used, appeared tobe
among the more unlikely cases for the RBF kernel. The RBF
ensemble Challenge test set CA of 55.0 % was below the cor-
responding estimated mean CA across 15 ensembles of size 25
SVMs and outside the 95% confidence interval.

4. Conclusions

An ensemble of SVMs was proposed for multi-class clas-
sification of NC vs. MCI vs. cMCI vs. AD using structural
MRI features and MMSE score. The ensemble algorithm com-
bined bagging without replacement and SFS foroptimal feature
subset selection. Experiments were conducted using both lin-
ear and RBF kernels in the SVMs achieving CAs of 55.6% and
55.0% in the International Challenge for Automated Prediction
of MCI from MRI Data. This was better than average single
SVM classifications and resulted in a third place in the chal-
lenge. Ensemble methods can be used to improve the perfor-
mance of the commonly applied SVM algorithm in dementia
classification providing competitive classification performance.
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Pudil, P., Novovǐcová, J., Kittler, J., 1994. Floating search methods in feature
selection. Pattern Recognit Lett 15, 1119–1125.

Rathore, S., Habes, M., Iftikhar, M.A., Shacklett, A., Davatzikos, C., 2017. A
review on neuroimaging-based classification studies and associated feature
extraction methods for Alzheimer’s disease and its prodromal stages. Neu-
roImage 155, 530–548.

Sabuncu, M.R., Konukoglu, E., for the Alzheimer’s Disease Neuroimaging Ini-
tiative, 2015. Clinical prediction from structural brain MRI scans: a large-
scale empirical study. Neuroinformatics 13, 31–46.

Sarica, A., Cerasa, A., Quattrone, A., Calhoun, V., for the Alzheimer’s Dis-
ease Neuroimaging Initiative, 2016. A machine learning neuroimaging
challenge for automated diagnosis of mild cognitive impairment. URL
https://inclass.kaggle.com/c/mci-prediction. Accessed December 29, 2017.

Schmansky, N., Desikan, R., Stevens, A., Nguyen, K., Moreau,

A., 2017. FreeSurferWiki - cortical parcellation. URL
https://surfer.nmr.mgh.harvard.edu/fswiki/CorticalParcellation. Accessed
December 29, 2017.
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