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Abstract—This study presents a fully automatic, data-driven
approach for texture-based quantitative analysis of chroic ob-
structive pulmonary disease (COPD) in pulmonary computed
tomography (CT) images. The approach uses supervised ledny
where the class labels are, in contrast to previous work, basl
on measured lung function instead of on manually annotated
regions of interest (ROIs). A quantitative measure of COPD
is obtained by fusing COPD probabilities computed in ROIs
within the lung fields where the individual ROI probabilitie s
are computed using ak nearest neighbor ¢NN) classifier. The
distance between two ROIs in thekNN classifier is computed
as the textural dissimilarity between the ROIs, where the RO
texture is described by histograms of filter responses from a
multi-scale, rotation invariant Gaussian filter bank. The method
was trained on 400 images from a lung cancer screening trial
and subsequently applied to classify 200 independent image
from the same screening trial. The texture-based measure vga
significantly better at discriminating between subjects wih and
without COPD than were the two most common quantitative
measures of COPD in the literature, which are based on densgit

The proposed measure achieved an area under the receiver

operating characteristic curve (AUC) of 0.713 whereas the ést
performing density measure achieved an AUC of 0.598. Furthe
the proposed measure is as reproducible as the density meass,
and there were indications that it correlates better with lung
function and is less influenced by inspiration level.

Index Terms—COPD, computed tomography (CT), lung, tex-
ture analysis, classification

I. INTRODUCTION

URRENT quantitative measures of chronic obstructi
pulmonary disease (COPD) are limited in several wayg
The gold standard for diagnosis of COPD is a pulmona{g
function test (PFT) [1]. These non-invasive measuremenas %p
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cheap and fast to acquire but are limited by insensitivity
to early stages of COPD [2] and lack of reproducibility
[3]. Visual and computerized assessment in computed to-
mography (CT) imaging has emerged as an alternative that
directly can measure the two components of COPD, namely,
chronic bronchitis and emphysema. However, it is difficult
to visually assess disease severity and progression. Mereo
visual assessment is subjective, time-consuming, anersuff
from intra-observer and inter-observer variability [4].[The
most widely used computerized measures, also referred to as
densitometry or quantitative CT, are the relative area of CT
attenuation values below a certain threshold (RA) [4] and
percentile density (PD) [6]. These measures consider only
emphysema and treat each parenchyma voxel in the CT image
independently, thereby disregarding potentially valaabfor-
mation such as spatial relations between voxels and pattern
at larger scales. The measures are also restricted to a sing|
threshold parameter, which makes them sensitive to scanner
calibration and noise in the CT images.

Supervised texture classification in CT, where a classi§ier i
trained on manually annotated regions of interest (ROIE) [7
[13], uses much more of the information available in the CT
images compared to the densitometric measures, and the out-
put of a trained classifier can be used for COPD quantification
e.g., by fusing individual ROI posterior probabilities J1[L3],

[14]. However, this approach requires labeled data, whéch i
usually acquired by manual annotation done by human experts

Vflanual annotation suffers from the same limitations asalisu

ssessment of emphysema in CT images [4], [5], moreover, it
hard to accurately outline regions of emphysema since the
pearance of the disease patterns can be subtle and diffuse
especially at early stages of COPD. Further, analysis igdom

to current knowledge and experience of the experts, ane ther
can be a bias towards typical cases in the annotated data set.
As a consequence, unknown or less typical patterns that are a
characteristic part of COPD may not be captured by the tdaine
classifier, and important discriminative information mag b

*Lauge Sgrensen is with the Image Group, Department of Ceenpu disregarded.

Science, University of Copenhagen, Denmark. (e-mail: éa@diku.dk).

Mads Nielsen is with the Image Group, Department of Comp8tence,
University of Copenhagen, Denmark and with Nordic Biosceetmaging.

Pechin Lo is with the Image Group, Department of Computeer®e,
University of Copenhagen, Denmark.

Haseem Ashraf is with the Department of Radiology, Akerstingersity
Hospital, Norway.

Jesper H. Pedersen is with Department of Thoracic SurgégghBspitalet,
University of Copenhagen, Denmark.

Marleen de Bruijne is with the Image Group, Department of @otar
Science, University of Copenhagen, Denmark and with them@lical
Imaging Group Rotterdam, Departments of Radiology & Meldigtormatics,
Erasmus MC, Rotterdam, The Netherlands.

In this study, we propose a completely data-driven approach
to texture-based analysis of COPD in pulmonary CT images.
The main idea is to utilize meta-data that is connected with
the CT images to acquire the labels. Hereby, no human
intervention is required, and all the above mentioned limi-
tations are handled. Instead, a fully data-driven, andetier
objective, CT image texture-based measure is obtained that
can easily be applied to analyze large data sets. Otherestudi
using labels acquired from meta-data, with different feedu
and classification setup, have been published in other areas



IEEE TRANSACTIONS ON MEDICAL IMAGING 2

of medical image analysis as well, including assessment tefior probability fusion for image classification is ddbed
structural changes of the breast tissue in digital mamnptgra in Section 11-E.
[15] and detection of tuberculosis in chest radiograph$.[16

The proposed approach relies on supervised texture-bagedSegmentation of the lung fields
classification of ROIs and fusion of individual ROl posterio Tpe lung fields are segmented in CT imagesing a region
probabilities similar to [11], [13], [14], but with ROIs and rowing algorithm, which assumes that lung parenchymadis be
labels obtained in the following way: each CT image ify 400 Hounsfield units (HU). The algorithm automatically
assigned a global label according to PFTs of the scannggects part of the trachea by searching for a dark cyliadric
subject that are acquired at the same time as the CT imaggy,cyre in the top of the image, and the detected trachea is
and ROIs are sampled at random from within the lung fieldghsequently used to segment the left and right main bronchi
and labeled with the global label of the CT image. In prireipl the segmented left and right main bronchi are then used to
other meta-data associated with the subject from which e Giiate two region growing procedures that segment the lef
image is acquired, such as genetic information anq b|omark$nd right lung field. The final segmented lung field$]),
from blood samples, could be used when labeling. In thige opiained after a post processing step, where erroyeous!
study, PFTs are used, which are the current gold standard fQf,qed regions belonging to the esophagus are removed by
diagnosis of COPD [1]. The obtained texture-based measy§gying for tube-like structures between the segmentedaled
is a probability of a subject suffering from COPD based Ofht jung fields. This is the same lung segmentation algorit
the eyldgnce in the CT image, and this number reflects CORR is ysed in [19], which is similar to [20}(]) excludes the
severity in two ways. It measures the number of ROIs thgtchea the main bronchi, and any structures with CT iitsens
show signs of COPD, i.e., how much of the lungs are affecteg},,ye 400 HU, which includes part of the vessels, the fissure
as well as the individual ROl COPD probabilities, i.e., thgng the airway walls. The parameters used in the automatic

confidence about abnormality in individual ROIs. lung segmentation algorithm were tuned on a different data
The performance of the obtained texture-based measureiy ihan the one used in this study.

diagnosis of COPD is compared to the performance of the

common densitometric measures RA and PD. A_ prelimina ' sampling of ROIs

version of the work presented here appeared in [17]. The ; . )

analysis is extended to a data set where also mild copp/Vr» Possibly overlapping, cubic ROIs are sampled at ran-

cases are considered, and several properties of the prbp from within the lung fields of CT image according to
approach are investigated, including correlation with glunS€gmentatios(/), and these ROIs represent that image. Only
function and the relationship with lung function adjusted f ROIs with centers inside the segmentation are allowed, but

confounders. The reproducibility and robustness to iaioin parts of an ROI can still be outside the segmentation. These
level is also evaluated parts are disregarded in the subsequent analysis.

. METHODS C. Texture descriptors

The proposed quantitative measure for COPD relies onln this study, the textural information in a CT image is

texture-based classification of CT ROIs. The ROI classificat captured by measuring var_ious texture fea@ure_s in randomly
is done with ak nearest neighbork(NN) classifier using _sampled ROIS_ from that Image, and a fllten_ng approach
used for this purpose. A filter bank comprising a total

dissimilarity between sets of filter response histograms g US . . : ) .
distance, and the histograms are based on the filter respo SFee|ght rotational invariant filters based on the Gaussian

from a rotation invariant, multi-scale Gaussian filter b&t8] unction and combinations of derivatives of the Gaussian is
A quantitative measure, of the severity of COPD is obtain plied at ”_‘“'“p'e scales, giving rise to a Iarge num_ber of
by fusing the individual ROI posterior probabilities intme iltered versions of the CT image. The ROIs in the image

posterior probability [14]. This approach has previousheb are represented by histograms of the filter responses, ane fo

successfully applied on another CT data set using manuall Ch.Of the applieq filters, and class.ifi-cation is. done based
labeled ROIs for training [13]. In [13], the same histograrﬂ_ this representation. Steps for obtaining the filter raspo
estimation technique was used with two-dimensional vessio |stogr.ams.are_ given as follows: .
of a subset of the filters considered in this study, and a quan-l) Filters: Eight @fferent measures of local |mage.structure.
titative measure of severity was also obtained by fusing rREIE used as base filters and these are: The Gaussian function
posteriors as classified ByNN, however, the ROI posteriors Gxi o) = B [1x||3 B
were estimated using prototype distances. )= (271/20)3 exp 252

A segmentation of the lung fields is used in order to steer the ) o
sampling of ROIs as well as to decide which voxels contriputé€reo is the standard deviation, or scale, ane- [z, y, z
to the filter response histograms, and Section I1-A dessrib§ @ Voxel; the three eigenvalues of the Hessian matrix
how this §egmentation is obta_ined. Section -8 describes N(xio), i=1,2,3, |[\|>|Aa] > |Asl; )
the sampling procedure. The filter response histograms, or )
texture descriptors, are described in Section II-C, the R@fadient magnitude
classification scheme is described in Section II-D, and tree p IVG(x;0)||2 = \/I_,% S22, 3)

]T
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where I, , denotes the partial first order derivative of imageased on the comma¢NN posterior probability estimate [25]

I w.rt. x at scales; Laplacian of the Gaussian are used o (%)
w; (X
V2G(x;0) = M (x;0) + Aa(x;0) + A3(x;0); 4) Plwilx, I) = PN e s(I) ©)
Gaussian curvature wherek,, (x) is the number of nearest neighbors of the ROI
centered on voxek, from lung segmentation(/), belonging
K(x;0) = A (x50)Aa(x50)As(x; 0); ®) to classw; out of a total ofk nearest neighbors. The summed
and the Frobenius norm of the Hessian histogram dissimilarity is used as ROI distance function in
kNN
1H (x;0)|lr = VA1(x50)2 + X2 (x;0)? + As(x;0)2. () ali
- . _ D(x,y) =Y L(fi(x), fi(y)) (10)
Since histograms are used, the ordering of the voxels is i1

disregarded and a classifier can therefore not automatic ”hereNf is the number of filter response histogranis;, )

learn combinations of features such as the Laplacian of e, histogram dissimilarity measure, afidx) ¢ R is the

Gaussian from the individual eigenvalues. Combinations %h filter response histogram with, bins estimated from an
. - . b
the eigenvalues, i.e., (4), (5), and (6), are thereforeieityl ROI centered o

usg)d Il\z]oirr]r]ealriigzjeiirr]mt\%llﬂg.c)n’rhe filtering is done by nor- Three histogram dissimilarity measurésare considered,
. 9 y the L1-norm, the L2-norm, and the earth movers distance

mah;ed convolqu_n [Zi] with a lung f|elds_ segmentatio EMD) [26]. The L1-norm and L2-norm are instances of the
obtained as described in Section II-A, as binary mask. Tp?norm

equation for normalized convolution is given by

N, 1/p
Ry 1) LB K) = |- K] = (Z - K|> )

wherex denotes convolution and the segmentatior- s(I) \yith p=1orp=2and whereH, K € R™ are histograms
computed from imagé is used as an indicator function, markeach with N, bins. The histograms used in this study are
ing whetherx is a lung parenchyma voxel or not. Derivatives,qrmalized to sum to one, and thus, is equivalent to
are computed on the Gaussian filtered images using finjte_ histogram intersection [26]. EMD can be computed using
differences. o _ _ (11) with p = 1 on cumulative versions off and K when H

3) Histogram estimationThe filter responses are quantized,,q x are one dimensional, have equal number of bins, and

into filter response histograms. The bin widths are derivegya| mass [27], which is the case in this study. This histogr
using adaptive binning [22]. This technique locally adapts dissimilarity measure will be denoted Hevp.
histogram bin widths to the data set at hand such that each

bin contains the same mass when computing the histogram of e

all data. Only voxels in the considered ROI that belong to & CT !mage Classification

lung segmentatior$ are used, and the resulting histogram is The ROI posterior probabilities are combined into an overal
normalized to sum to one. The number of histogram s Subject posterior probability using a static fusion scheme
computed fromV, voxels is determined according to namely, the mean rule [14]

Nb = 3\/ N57 (8)
which is an approximation of the data-based procedure for

choosing the bin width presented in [23] that asymptoycal(yhere v, is the number of ROIs that are considered. The

minimizes the integrated mean squared error of the histogra, erage sample posterior probability (12) then provides a

estimate of the true density. Using adaptive binning has .55y re of the probability that a subject suffers from COPD,

potential to further decrease this error. based on the CT image. This number reflects both the number
of samples that show signs of COPD as well as the probability

I, =

N,
Plaill) = = 3 Plwil;, D) 12)
r jzl

D. ROI Classification for the individual ROls.
ROI classification is performed using thenearest neighbor
(KNN) classifier [24], [25], a nonparametric approach based [1l. EXPERIMENTS AND RESULTS

directly on distances computed between objektéN is the A. Data
natural classifier of choice when working on a distance repre
sentation of the objects and has previously shown to work Wﬁjn
for lung tissue classification in CT [8], [13]. The classiffeas
one free parameter, the number of neighbarshat governs
the smoothness of the non-linear decision boundary in t
feature space. Probabilistic classification outputs ferR®OIls

Experiments are conducted using low-dose volumetric CT
ages acquired at full inspiration from current and former
smokers enrolled in the Danish Lung Cancer Screening Trial
DLCST) [28] with the following scan parameters: tube volt-
ﬁe 120 kV, exposure 40 mAs, slice thickness 1 mm, and in-
plane resolution ranging from 0.72 to 0.78 mm. The subjects
were scanned at entry (baseline) and were then subsequently
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TABLE | . .. . .
GROUP CHARACTERISTICS AND LUNG FUNCTION MEASUREMENTS For ~ Data setA is randomly divided into three non-overlapping

THE HEALTHY AND THE COPDGROUP IN DATA SETA. THE NUMBERS  SUDSEtS Arain, Avalidation aNd.Atest cONtaining 100 healthy and

REPORTED ARE MEAN VALUES WITH STANDARD DEVIATION IN 100 COPD SUbjeCtS eaCh A Second training S‘GIa iS
PARENTHESES AND RANGE IN SQUARE BRACKETS . ' . in2,
constructed by excluding the mild COPD cases and an equal
Healthy CoPD amount of healthy cases with the lowest REApred from
Age (years) 57 (5) [49.69] 59 () BO71] Ayain @s illustrated in Fig. 1. This is to exclude more gncertaln
Gender (menwomen) 172/128 175125 cases based on FEY%pred. The number of subjects Main2
Height (cm) 174 (9) [150-200] 174 (9) [150-195] is SZ 31 moderate or severe COPD subjects and 31 healthy
Weight (kg) 77 (14) [50-117] 74 (14) [43-126]  SUPIECES. _ _
Pack years (years) 35 (12) [19-98] 38 (14) [19-126] Data setl’?’. 50 CT image pairs from the DLCST_database
Smoking status where both images in a pair are from the same subject that has
(currentfformer) 222/78 243/57 been re-scanned for a suspicious nodule. All pairs have less
FEV: (1) 313 (0.71) [1.264.91] 2.62 (0.70) [0.88-4.54] than 86 _days between the aCQUI§I'[.I0n (_jates:, apd we assume
FEV; 9%pred 1.00 (0.14) [0.58-1.41]  0.85 (0.17) [0.36-1.33]Progression of COPD to be negI|g|bI_e in Fh|s yme interval.
FEV, /FVC 0.76 (0.04) [0.70-0.96]  0.63 (0.06) [0.37-0.70] There is no qverlap between the su_bjects in this data set and
GOLD stage the subjects in data set. Data set33 is used to evaluate the
(nolIIII) 300/0/0/0/0 0/197/93/10/0 reproducibility and the robustness to inspiration level.
B. Training and Parameter selection
0.9r 1 There are several parameters to select in the proposed
o classification system and these are listed below togethiér wi
R D 4 , :
0.8r o0p ®0, 1  the possible parameter values considered:
@om@ goo 5 © e ROI sizer x r x r with » = {21,31,41} voxels.
. 0.7 ¥ The considered ROI sizes are at the resolution of the
£ x x5 f % secondary pulmonary lobule that is approximately2.5
Z 0.61 x X x 1 cm in diameter [30], and we assume the lung texture to
= *x * be homogeneous at this level;
0.5r N O healthy 1 « number of nearest neighbors in tk&IN classifierk =
% moderate to severe COPD {25,35,45}. This was chosen as a trade-off between
0.4r x excluded healthy 1 regularization and speed. The computational complexity
X . . .
excluded (mild) COPD of _ak nea_rest neighbor query in the approximate n_earest
0.3 ‘ : : -] neighbor library (ANN) [31] isO(kdlogn) wheren is
0.4 0.6 0.8 1 1.2 1.4 the number of prototypes antlis the dimension. Further,
FEV, %pred the results did not vary much within the considered range,

_ _ _ which is in between 1NN and the usual square root rule
Fig. 1. Construction ofAyaine from Again. All mild COPD cases and an \/— — /200 x 50 = 100NN [32].

equal amount of healthy cases with the lowest F®red are excluded from . oY
Arain- « histogram dissimilarity measute = {L1, L2, Lemp };

« the different base filter§(1), (2),(3),(4),(5),(6)} at
scaless = {0.6(v/2)"}i=o....6 Mm.

scanned annually (followup) for four consecutive years: AN The best combination of, L, and k is learned using
nual PFTs were also performed along with the CT imageg, .. or Ay.in2 and Avaiidation and sequential forward feature
including the forced expiratory volume in one second (FEV gglection (SFS) [24] is used for determining the optimal
and the forcgd vital capacity (FVC_). Subjects were re'sed”_r!histogram subset, from a total df; = 56 histograms, for
after approximately three months in cases where non-@&icifieach combination. The objective function in SFS is the area
nodules with a diameter of 5 to 15 mm were detected.  ynder the receiver operating characteristic (ROC) cundGp

We perform experiments on two subsets of the DLCSdomputed from the ROIs iMyaigation Classified usingtNN
database that we denote data setand 5. These data setsyith the ROIs inAyain OF Atainz S prototypes as well as the
are defined in the following way: current values of, L, andk.

Data setA. Two subject groups are selected at random usingTphe posterior probability of COPD in a CT image, i.e.,
the Global Initiative for Chronic Obstructive Lung Diseasqg(coqu) estimated using (12), is used as the proposed
(GOLD) criteria [1]. The first group consists of 300 subjectgT texture-based measure and is denddtN and kNN2,
without COPD (FEV/FVC > 0.7) and the second group depending on whethedyain oF Ayainz is used.
consists of subjects with GOLD stage | to I, or mild 10 The number of ROIs sampled per imagé,, is fixed to 50,
severe COPD, (FEVFVC < 0.7 and FEV{%pred>= 30% and the number of histogram bins& = r according to (8).
where FEV %tpred is FEV corrected for age, sex, and heightrne adaptive histogram binning is computed frofgu, using
[29)). Baselme_ CT images from the DLCST databasg are usglseparate set of randomly sampled ROIs, 10 from each image.
The characteristics of the two groups are reported in Tabley\N classification is performed using the approximate ne¢ares
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. . . . . TABLE Il
neighbor (ANN) library [31] with the approximation errortse  copppiacNOsIS AND QUANTIFICATION RESULTS AUCS FROM THE
to zero to turn off the approximation part of the algorithm. ROCANALYSIS WITH p-VALUES FOR DIFFERENCE INAUC WITH kNN2
ACCORDING TO ADELONG, DELONG, AND CLARKE-PEARSON S TEST
[34] SHOWN IN PARENTHESIS CORRELATION WITH PFTS ACCORDING TO

C. Evaluation Strategy SPEARMAN'S RANK CORRELATIONp WITH pP-VALUES OF THE
. CORRELATION IN PARENTHESIS
The trained CT texture-based measuredN and kNN2,

are evaluated ondw,s; by ROC analysis on subject level measure AUC » FEV1%pred » FEV1/FVC
and by Spearmans; rank. correlation with FlE'_prred and =N 0.690 p — 0.045) 0111 p— 0.116) -0.368 p < 10 1)
FEV1/FVC. The relationship between the obtained CT-based . 0.713 (- ) 01514 = 0.033) -0.415 p < 10-4)
measure and PFTs as well as class label is further investigat -~ 556, < 10-%) 0,045 p — 0.526) -0.206 p — 0.004)
using regression-based adjustment for confounders. PDys 0598 p < 10-1)  0.049 p = 0.492)  0.207 p = 0.003)

We compare the obtained results to the densitometric mea-
sures RA and PD. The densitometric measures are computed
from the entire lung fields. RA corresponds to the amount =
of voxels below a given HU threshold relative to the total e
amount of voxels within the lung fields [4], and a threshold of s
—950 HU is used in this study. This measure is sometimes
referred to as emphysema index or density mask. PD is r s
derived from the CT attenuation histogram as the HU value - o
at a certain percentile [6], and the M 5ercentile is used g ,‘ s
in this study. The two densitometric measures are denoteg
RAgs0 and PDs, respectively. Both measures quantify the ¢ K P
amount of emphysema present in the lung. However, as for ,I
the probabilistic output of the proposed approach, oné stil I .JI i
needs to choose an operating point to turn the measure into _’_['( A
a hard classification of the image. For R4, the parameter r-';’v _]I;§§2
varied to produce the different points on the ROC-curveés th | ;/ - 5}%950
percentage of voxels below the HU threshold, and for D 15
the parameter varied is the 1 percentile in HU. L-specificity

i X . . Fig. 2. ROC curves from the experiment. The curvesAbiN and kNN2

D. COPD diagnosis and quantification are based on (12).

The whole learning framework is applied to data sét
for COPD diagnosis and quantification using the resulting . . ,
quantitative measure. The results of the experiment anersho/©arS (0ne pack year is defined as 20 cigarettes smoked
in Fig. 2 and in Table II. The proposed texture-based approaP®’ day for one y2ear), gender, body mass index (BMI
achieving an AUC of 0.713, is significantly better at discrimV€ight/ (heigh100)<), and smoking status [33]. For this
inating between CT images from healthy subjects and COPY"POSe the following multiple linear regression modelsgsd
subjects than are the densitometric measureg BRDBd RAy5
(p < 10~%). This is also the case when comparikiyN and PFT= B0 + 51kNN2 + Srage+ ﬁ3pac.k yearst
the densitometric measurdshN2 is significantly correlated fagender+ 5;BMI + fssmoking status- e (13)
with both FEVi%pred and FEY/FVC whereaskNN, PDis,  \yhereg; are the free parameters anis a random component.
and RAy; are only significantly correlated with FEXFVC.  age and pack years are measured in whole years, gender is
All f_our evaluated measures are capable qf separating the %‘fnary (0: male, 1: female), and smoking status is binary (0:
subject groupsy( < 0.05) according to a Wilcoxon rank sum ¢, rrent smoker, 1: former smoker). The resulting regressio
test. The AUC forkNN.Z is significantly bettgr than the AUC parameters estimated ofiest are shown in Table 11l together
for kNN, and KNN2 will therefore be used in the remainingyith associategh-values. All three CT-based measures signif-
experiments. _ _ icantly explain FE\{/FVC according to a t-test whereas none

Note that the densitometric measures are computed frgfithe CT-based measures significantly explain F&gred.

the full lung fields, and they are therefore based on MOgRerall, all six models significantly explain the assoaeéT
information than are the proposed texture-based measye. - 05) according to an F-test.

which is computed from 50 randomly sampled ROIs. The
performance of P and RAy;o when computed only from .
the same 50 ROIs as used kNN and kNN2, is slightly E. Stability of proposed measure
worse than when computed from the entire lung fields with 25% of the volume of the lung segmentation is on average
AUC = 0.586 and AUC= 0.591, respectively. covered by 50 randomly sampled ROIs of silex 41 x 41

The relationship between the CT-based quantitative megxels. Theoretically, this could b&5% but some ROls
sures, kNN2, RAy50, and PDs, and PFTs is investigatedare overlapping and some ROIs are partly outside the lung
while adjusting for confounding factors, namely age, pagegmentation. To inspect whethéi. = 50 is a sufficient
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TABLE IlI

RELATIONSHIP BETWEENCT-BASED MEASURES ANDPFTS WHILE
ADJUSTING FOR COMMON CONFOUNDERS FOROPDUSING (13).

REGRESSION COEFFICIENTS ESTIMATED FROM THE TEST SET ARE SHOW
WITH CORRESPONDINGp-VALUES FROM A TWO-TAILED T-TEST FOR

SIGNIFICANT RELATIONSHIP WITH THEPFTIN PARENTHESIS

Explanatory variable

FEV 1 %pred

FEV1/FVC

kNN2 (probability)

age
pack years
gender

BMI

smoking status

-0.1793 1 = 0.086)
-0.00344 = 0.157)
-0.0013(= 0.104)
-0.00151( = 0.953)
-0.0055 {p = 0.101)
0.098Q (< 10~%)

-0.2856 p < 10~%)
-0.0020 = 0.075)
-0.0006 p = 0.112)
-0.0188 { = 0.140)
-0.0008 p = 0.632)
0.0466 p < 10~%)

RAg50 (%)
age

pack years
gender

BMI

smoking status

-0.0021 p = 0.287)
-0.00404 = 0.085)
-0.0015(= 0.070)
0.0043y( = 0.870)
-0.0041 p = 0.206)
0.102p(< 107%)

-0.0033 p < 10~%)
-0.0031 { = 0.009)
-0.0009 p = 0.034)
-0.0096 { = 0.474)
0.0014 p = 0.411)
0.0539 p < 10~%)

PD;5 (HU)
age

pack years
gender

BMI

smoking status

0.0004 p = 0.520)
-0.00414 = 0.081)
-0.00150(= 0.075)
0.0085y( = 0.748)
-0.0042 {p = 0.200)
0.0999 (< 10—%)

0.0011 p = 0.001)
-0.0030 = 0.013)
-0.0008 { = 0.041)
-0.0086 { = 0.520)
0.0013 p = 0.444)
0.0532 p < 10~%)
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Fig. 3. ROC curves foikNN2 in ten repeated experiments with different

random ROI samplings on the same subject data splits. Tleadeghows the

AUC of each experiment.
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Fig. 4. The mean AUC foikNN2 as a function of the number of ROIs
used in (12) for test image classification. The error barsstie standard
deviation of the estimated mean AUC.

TABLE IV
NUMBER OF TIMES A CERTAIN PARAMETER IS SELECTED IN THE TEN
REPEATED EXPERIMENTS

kNN2 ROI size histogram dissimilarity
k=25 5 r=10 O L=1I1, 3
k=3 3 r=15 1 L=1Lo 0
k=45 2 r=20 9 L=EMD 7

are reported in Table IV. The tendency is smallin the
kNN classifier, large ROI size;, and EMD as histogram
dissimilarity measure. The most often independently se-
lected filters, reported as {filter, frequency}, aré?$(x; 0.6),
7}! {||V(X,48)||2, 6}1 {)\1(X;4.8), 6}1 {G(X724)1 5}1
{A2(x;0.85), 5}, {A5(x;4.8), 5}, { K(x;4.8), 5}. Note that
a filter can maximally be selected 10 times, once for each
repeated experiment. SFS selects between 5 and 11 filters out
of the 56 possible filters, and the median number of filters
selected is 7.

Classifying the images Mg USing between 5 and 150
ROIls in (12), which are classified usikgNN2, further shows
that 50 samples from a test image is sufficient, as illugirate
in Fig. 4. Increasing the number of ROIs beyond 50 only
improves the AUC slightly. The mean AUC shown in Fig. 4 is
estimated from 1000 ROI subsets of size equal to the number
of ROIs considered, randomly sampled without replacement
from a pool of 150 possible ROIs. Note that the standard

number of samples in order to capture the characteristicsdgyiation is 0 when the number of considered ROIs is 150,
data setA related to healthy subjects and COPD subjectsince all 1000 subsets contain the same ROls.
we repeated the whole learning procedure ten times. In each

repeated procedure, the same data splits, Agin2, Avaiidations
and Aws, Were used, but each time with different randomly

F. Reproducibility and robustness to inspiration level

sampled ROIs. Fig. 3 shows the resulting ROC curves and th The reproducibility of the proposed measure as well as the

AUCs are reported in the legend in the figure. The standd

ustness to inspiration level is evaluated and compared t

deviation of the AUCs i9).014. The AUCs are rather similar, the d_e_nsitometric measures on da_ta Beﬂ'_he traine_dk;NN
and they are all larger than the AUCs of the densitometr‘i%ass'f'er from the the experiment in Section IlI-D is used to

measures.

The selected parameters in the ten repeated experimenq

represent the proposed measure.
t‘ghe reproducibility of a measure is evaluated using Spear-
an’s rank correlation computed between measures obtained
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TABLE V . . .
MEASURES OF REPRODUCIBILITY AND ROBUSTNESS To INspiraTion  SNOWN that the learned effect still holds when adjusting for

LEVEL, BOTH USING SPEARMAN’ S RANK CORRELATIONp(-, -). p-vALUES  confounding factors such as age and smoking history.

OF THE CORRELATIONS ARE SHOWN IN PARENTHESES Including mild COPD cases in the analysis deteriorates
performance in terms of AUC compared to [17] that excluded
these cases. There are three possibilities that could ¢hisse
result. First, the disease may be picked up by PFTs before
textural changes appear in the lung tissue. Including mild
COPD, as diagnosed by PFTs, may in this case add data
that the proposed approach cannot distinguish. Seconils P
o ) may pick up the disease at the same time as textural changes
from_the first imagem,, and measures from the second 'ma_g%ppear, in which case including mild COPD simply produces a
my, in the 50 pairs of data sé. The r_eSUItS are repqrted "Mharder classification problem since the signal is weakehim t
the second column of Table NN2 is as reproducible as data. Thirdly, textural changes may appear before PFTs pick
RAgso and PO . up the disease. In this case, data with more uncertain libels

We use .the lung vo!ume (LV) in I|ter§ mgasgred from thﬁdded when considering mild COPD cases. We hypothesize
segmentation as an indicator of the inspiration level. Tr{ﬁat the third possibility is the case, since PFTs measure
sensitivi_ty to inspiratiqn level is evaluated by Spearmaahk the respiratory system as a whole as opposed to texture that
correlation between signed measurement differenge; m, measures local changes in the lung tissue. Further, it has

and the difference in LV divided by the average denoted By,o, ostimated that 30% of the lung must be destroyed by
LV 4. The results are reported in the third column of Table V

, , i - emphysema before pulmonary function abnormalities become
D|ﬁergn9(_as in both the densn.ometnc.measures and N2 evident [2] whereas loss of lung tissue is apparent earier i
are significantly correlated with LV difference. Howeveret ~ image.
correlation with !‘V diffgrence is Iowe_r f(_)kN_NZ cgmpared A two-class problem was defined by the two subject groups,
to thg_ tyvo dgnsﬂpmgtnc measures, indicating slightly dow healthy (no COPD according to the GOLD criteria [1]),
sensitivity to inspiration level. and COPD (mild to severe COPD or moderate to severe

COPD according to the GOLD criteria [1]). However, other
IV. DISCUSSION AND CONCLUSION possibilities exist, both on the type of problem to consider

The conducted experiments show that it is possible to traamd on the type of meta-data to use for group definitions.
a texture-based classifier to recognize COPD in pulmonary @ne possibility would be to consider several or all of the
images using supervised learning techniques in a fully-aufour GOLD stages [1] as separate groups, which is similar
matic, data-driven approach without any human interventioin spirit to [35], for assessing GOLD stage or COPD severity.
Hereby, all the limitations associated with manual lalgelinHowever, regression may be more suitable for this purpose.
are avoided. The meta-data driven labeling of ROIls, in thihe proposed approach could also be used to gain a better
study using PFTs, however, has other potential problemmderstanding of which textural patterns in the CT imagas th
The disease patterns may be localized only in parts of thee related to, e.qg., different genotypes or markers framodl
CT images in subjects with COPD. For instance, parasepsalmples by using genetic information or blood biomarkers to
emphysema is located in the periphery of the lung, cedefine groups and apply the whole learning framework. This
trilobular emphysema is predominantly in the upper lobesjay be expanded to further analyze how these patterns evolve
while panlobular emphysema is predominantly in the lowewver time in longitudinal data.
lobes [30]. Randomly sampled ROIs from COPD subjects will The proposed approach is directly applicable in situations
therefore likely contain both diseased and healthy tissuerer where a large data set is available and an objective queveita
the healthy tissue ROIls still receive the label COPD. Thaeasure for specifically that data is needed, as long aslbel
reverse may also be the case in healthy subjects but is @pedttaining data can be obtained. This could be in pharmacdutic
to be less prominent. The classes in this weakly labelstudies or in clinical research, for example. However, the
data set are therefore expected to overlap more comparedrained method is tied to data with the same or similar
classes in manually labeled data where experts have ardotaharacteristics. Application in clinical practice is lesmight-
relatively clear examples of the different classes, arglfibses forward due to large variety in data, mainly caused by d#ffeer
a challenging classification problem. scanning protocols. Implementation in a workstation airaed

PFTs are insensitive to early stages of COPD [2], lad}inical use would at least require a reliable segmentabion
reproducibility [3], and can be affected by other factorthe lung fields and an agreed upon set of base filters. Lung
limiting the airflow in the airways than those associatechwitsegmentation algorithms are already implemented in skvera
COPD. Despite these limitations, PFTs were used to obtaiammercial workstations. Based on the results of in thidystu
labels in this study assuming that it was possible to leasimgu and on previous results [13], it could be the following base
supervised learning, the textural COPD patterns in CT thet dilters: ||V (x; 0)||2, V2(x; o), andG(x; o). The specific scale
related to the part of the disease that correlates with PF&s$.which the different base filters are applied can be tuned
PFTs are also the current gold standard for COPD diagnoaixording to the scanner settings, either automatically, e
[1]. The results demonstrate that it is indeed possibledomle using SFS, or by setting them according to scan parameters
the textural patterns associated with PFTs, and it wasdurttsuch as the used reconstruction kernel and radiation dose.

Measure p(mi, mo) p(ma —mq,LVq)
ENN2 0.83 p < 107%) 071 p < 107%)
RAg10 0.82 pp < 10~%) 0.83 p < 107%)
PDi5 08lp<10~%) -083fp<107%
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