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Texture-Based Analysis of COPD: a Data-Driven
Approach

Lauge Sørensen*, Mads Nielsen, Pechin Lo, Haseem Ashraf, Jesper H. Pedersen, and Marleen de Bruijne

Abstract—This study presents a fully automatic, data-driven
approach for texture-based quantitative analysis of chronic ob-
structive pulmonary disease (COPD) in pulmonary computed
tomography (CT) images. The approach uses supervised learning
where the class labels are, in contrast to previous work, based
on measured lung function instead of on manually annotated
regions of interest (ROIs). A quantitative measure of COPD
is obtained by fusing COPD probabilities computed in ROIs
within the lung fields where the individual ROI probabilitie s
are computed using ak nearest neighbor (kNN) classifier. The
distance between two ROIs in thekNN classifier is computed
as the textural dissimilarity between the ROIs, where the ROI
texture is described by histograms of filter responses from a
multi-scale, rotation invariant Gaussian filter bank. The method
was trained on 400 images from a lung cancer screening trial
and subsequently applied to classify 200 independent images
from the same screening trial. The texture-based measure was
significantly better at discriminating between subjects with and
without COPD than were the two most common quantitative
measures of COPD in the literature, which are based on density.
The proposed measure achieved an area under the receiver
operating characteristic curve (AUC) of 0.713 whereas the best
performing density measure achieved an AUC of 0.598. Further,
the proposed measure is as reproducible as the density measures,
and there were indications that it correlates better with lung
function and is less influenced by inspiration level.

Index Terms—COPD, computed tomography (CT), lung, tex-
ture analysis, classification

I. I NTRODUCTION

CURRENT quantitative measures of chronic obstructive
pulmonary disease (COPD) are limited in several ways.

The gold standard for diagnosis of COPD is a pulmonary
function test (PFT) [1]. These non-invasive measurements are
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cheap and fast to acquire but are limited by insensitivity
to early stages of COPD [2] and lack of reproducibility
[3]. Visual and computerized assessment in computed to-
mography (CT) imaging has emerged as an alternative that
directly can measure the two components of COPD, namely,
chronic bronchitis and emphysema. However, it is difficult
to visually assess disease severity and progression. Moreover,
visual assessment is subjective, time-consuming, and suffers
from intra-observer and inter-observer variability [4], [5]. The
most widely used computerized measures, also referred to as
densitometry or quantitative CT, are the relative area of CT
attenuation values below a certain threshold (RA) [4] and
percentile density (PD) [6]. These measures consider only
emphysema and treat each parenchyma voxel in the CT image
independently, thereby disregarding potentially valuable infor-
mation such as spatial relations between voxels and patterns
at larger scales. The measures are also restricted to a single
threshold parameter, which makes them sensitive to scanner
calibration and noise in the CT images.

Supervised texture classification in CT, where a classifier is
trained on manually annotated regions of interest (ROIs) [7]–
[13], uses much more of the information available in the CT
images compared to the densitometric measures, and the out-
put of a trained classifier can be used for COPD quantification,
e.g., by fusing individual ROI posterior probabilities [11], [13],
[14]. However, this approach requires labeled data, which is
usually acquired by manual annotation done by human experts.
Manual annotation suffers from the same limitations as visual
assessment of emphysema in CT images [4], [5], moreover, it
is hard to accurately outline regions of emphysema since the
appearance of the disease patterns can be subtle and diffuse,
especially at early stages of COPD. Further, analysis is limited
to current knowledge and experience of the experts, and there
can be a bias towards typical cases in the annotated data set.
As a consequence, unknown or less typical patterns that are a
characteristic part of COPD may not be captured by the trained
classifier, and important discriminative information may be
disregarded.

In this study, we propose a completely data-driven approach
to texture-based analysis of COPD in pulmonary CT images.
The main idea is to utilize meta-data that is connected with
the CT images to acquire the labels. Hereby, no human
intervention is required, and all the above mentioned limi-
tations are handled. Instead, a fully data-driven, and thereby
objective, CT image texture-based measure is obtained that
can easily be applied to analyze large data sets. Other studies
using labels acquired from meta-data, with different features
and classification setup, have been published in other areas
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of medical image analysis as well, including assessment of
structural changes of the breast tissue in digital mammography
[15] and detection of tuberculosis in chest radiographs [16].

The proposed approach relies on supervised texture-based
classification of ROIs and fusion of individual ROI posterior
probabilities similar to [11], [13], [14], but with ROIs and
labels obtained in the following way: each CT image is
assigned a global label according to PFTs of the scanned
subject that are acquired at the same time as the CT image,
and ROIs are sampled at random from within the lung fields
and labeled with the global label of the CT image. In principle,
other meta-data associated with the subject from which the CT
image is acquired, such as genetic information and biomarkers
from blood samples, could be used when labeling. In this
study, PFTs are used, which are the current gold standard for
diagnosis of COPD [1]. The obtained texture-based measure
is a probability of a subject suffering from COPD based on
the evidence in the CT image, and this number reflects COPD
severity in two ways. It measures the number of ROIs that
show signs of COPD, i.e., how much of the lungs are affected,
as well as the individual ROI COPD probabilities, i.e., the
confidence about abnormality in individual ROIs.

The performance of the obtained texture-based measure in
diagnosis of COPD is compared to the performance of the
common densitometric measures RA and PD. A preliminary
version of the work presented here appeared in [17]. The
analysis is extended to a data set where also mild COPD
cases are considered, and several properties of the proposed
approach are investigated, including correlation with lung
function and the relationship with lung function adjusted for
confounders. The reproducibility and robustness to inspiration
level is also evaluated.

II. M ETHODS

The proposed quantitative measure for COPD relies on
texture-based classification of CT ROIs. The ROI classification
is done with ak nearest neighbor (kNN) classifier using
dissimilarity between sets of filter response histograms as
distance, and the histograms are based on the filter responses
from a rotation invariant, multi-scale Gaussian filter bank[18].
A quantitative measure of the severity of COPD is obtained
by fusing the individual ROI posterior probabilities into one
posterior probability [14]. This approach has previously been
successfully applied on another CT data set using manually
labeled ROIs for training [13]. In [13], the same histogram
estimation technique was used with two-dimensional versions
of a subset of the filters considered in this study, and a quan-
titative measure of severity was also obtained by fusing ROI
posteriors as classified bykNN, however, the ROI posteriors
were estimated using prototype distances.

A segmentation of the lung fields is used in order to steer the
sampling of ROIs as well as to decide which voxels contribute
to the filter response histograms, and Section II-A describes
how this segmentation is obtained. Section II-B describes
the sampling procedure. The filter response histograms, or
texture descriptors, are described in Section II-C, the ROI
classification scheme is described in Section II-D, and the pos-

terior probability fusion for image classification is described
in Section II-E.

A. Segmentation of the lung fields

The lung fields are segmented in CT imageI using a region
growing algorithm, which assumes that lung parenchyma is be-
low −400 Hounsfield units (HU). The algorithm automatically
detects part of the trachea by searching for a dark cylindrical
structure in the top of the image, and the detected trachea is
subsequently used to segment the left and right main bronchi.
The segmented left and right main bronchi are then used to
initiate two region growing procedures that segment the left
and right lung field. The final segmented lung fields,s(I),
are obtained after a post processing step, where erroneously
included regions belonging to the esophagus are removed by
looking for tube-like structures between the segmented left and
right lung fields. This is the same lung segmentation algorithm
as is used in [19], which is similar to [20].s(I) excludes the
trachea, the main bronchi, and any structures with CT intensity
above -400 HU, which includes part of the vessels, the fissures,
and the airway walls. The parameters used in the automatic
lung segmentation algorithm were tuned on a different data
set than the one used in this study.

B. Sampling of ROIs

Nr, possibly overlapping, cubic ROIs are sampled at ran-
dom from within the lung fields of CT imageI according to
segmentations(I), and these ROIs represent that image. Only
ROIs with centers inside the segmentation are allowed, but
parts of an ROI can still be outside the segmentation. These
parts are disregarded in the subsequent analysis.

C. Texture descriptors

In this study, the textural information in a CT image is
captured by measuring various texture features in randomly
sampled ROIs from that image, and a filtering approach
is used for this purpose. A filter bank comprising a total
of eight rotational invariant filters based on the Gaussian
function and combinations of derivatives of the Gaussian is
applied at multiple scales, giving rise to a large number of
filtered versions of the CT image. The ROIs in the image
are represented by histograms of the filter responses, one for
each of the applied filters, and classification is done based
on this representation. Steps for obtaining the filter response
histograms are given as follows:

1) Filters: Eight different measures of local image structure
are used as base filters and these are: The Gaussian function

G(x;σ) =
1

(2π1/2σ)3
exp

(

− ||x||2
2

2σ2

)

(1)

whereσ is the standard deviation, or scale, andx = [x, y, z]T

is a voxel; the three eigenvalues of the Hessian matrix

λi(x;σ), i = 1, 2, 3, |λ1| ≥ |λ2| ≥ |λ3|; (2)

gradient magnitude

||∇G(x;σ)||2 =
√

I2x,σ + I2y,σ + I2z,σ (3)
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whereIx,σ denotes the partial first order derivative of image
I w.r.t. x at scaleσ; Laplacian of the Gaussian

∇2G(x;σ) = λ1(x;σ) + λ2(x;σ) + λ3(x;σ); (4)

Gaussian curvature

K(x;σ) = λ1(x;σ)λ2(x;σ)λ3(x;σ); (5)

and the Frobenius norm of the Hessian

||H(x;σ)||F =
√

λ1(x;σ)2 + λ2(x;σ)2 + λ3(x;σ)2. (6)

Since histograms are used, the ordering of the voxels is
disregarded and a classifier can therefore not automatically
learn combinations of features such as the Laplacian of the
Gaussian from the individual eigenvalues. Combinations of
the eigenvalues, i.e., (4), (5), and (6), are therefore explicitly
used in the representation.

2) Normalized convolution:The filtering is done by nor-
malized convolution [21] with a lung fields segmentation,
obtained as described in Section II-A, as binary mask. The
equation for normalized convolution is given by

Iσ =
(S(x)I(x)) ∗G(x;σ)

S(x) ∗G(x;σ)
(7)

where∗ denotes convolution and the segmentationS = s(I)
computed from imageI is used as an indicator function, mark-
ing whetherx is a lung parenchyma voxel or not. Derivatives
are computed on the Gaussian filtered images using finite
differences.

3) Histogram estimation:The filter responses are quantized
into filter response histograms. The bin widths are derived
using adaptive binning [22]. This technique locally adaptsthe
histogram bin widths to the data set at hand such that each
bin contains the same mass when computing the histogram of
all data. Only voxels in the considered ROI that belong to a
lung segmentationS are used, and the resulting histogram is
normalized to sum to one. The number of histogram binsNb

computed fromNs voxels is determined according to

Nb =
3

√

Ns, (8)

which is an approximation of the data-based procedure for
choosing the bin width presented in [23] that asymptotically
minimizes the integrated mean squared error of the histogram
estimate of the true density. Using adaptive binning has the
potential to further decrease this error.

D. ROI Classification

ROI classification is performed using thek nearest neighbor
(kNN) classifier [24], [25], a nonparametric approach based
directly on distances computed between objects.kNN is the
natural classifier of choice when working on a distance repre-
sentation of the objects and has previously shown to work well
for lung tissue classification in CT [8], [13]. The classifierhas
one free parameter, the number of neighborsk, that governs
the smoothness of the non-linear decision boundary in the
feature space. Probabilistic classification outputs for the ROIs

based on the commonkNN posterior probability estimate [25]
are used

P (ωi|x, I) =
kωi

(x)

k
, x ∈ s(I) (9)

wherekωi
(x) is the number of nearest neighbors of the ROI

centered on voxelx, from lung segmentations(I), belonging
to classωi out of a total ofk nearest neighbors. The summed
histogram dissimilarity is used as ROI distance function in
kNN

D(x,y) =

Nf
∑

i=1

L(fi(x), fi(y)) (10)

whereNf is the number of filter response histograms,L(·, ·)
is a histogram dissimilarity measure, andfi(x) ∈ R

Nb is the
i’th filter response histogram withNb bins estimated from an
ROI centered onx.

Three histogram dissimilarity measuresL are considered,
the L1-norm, the L2-norm, and the earth movers distance
(EMD) [26]. The L1-norm and L2-norm are instances of the
p-norm

Lp(H,K) = ||H −K||p =

(

Nb
∑

i=1

|Hi −Ki|p
)1/p

(11)

with p = 1 or p = 2 and whereH,K ∈ R
Nb are histograms

each withNb bins. The histograms used in this study are
normalized to sum to one, and thusL1 is equivalent to
1− histogram intersection [26]. EMD can be computed using
(11) with p = 1 on cumulative versions ofH andK whenH
andK are one dimensional, have equal number of bins, and
equal mass [27], which is the case in this study. This histogram
dissimilarity measure will be denoted byLEMD.

E. CT Image Classification

The ROI posterior probabilities are combined into an overall
subject posterior probability using a static fusion scheme,
namely, the mean rule [14]

P (ωi|I) =
1

Nr

Nr
∑

j=1

P (ωi|xj , I) (12)

whereNr is the number of ROIs that are considered. The
average sample posterior probability (12) then provides a
measure of the probability that a subject suffers from COPD,
based on the CT image. This number reflects both the number
of samples that show signs of COPD as well as the probability
for the individual ROIs.

III. E XPERIMENTS AND RESULTS

A. Data

Experiments are conducted using low-dose volumetric CT
images acquired at full inspiration from current and former
smokers enrolled in the Danish Lung Cancer Screening Trial
(DLCST) [28] with the following scan parameters: tube volt-
age 120 kV, exposure 40 mAs, slice thickness 1 mm, and in-
plane resolution ranging from 0.72 to 0.78 mm. The subjects
were scanned at entry (baseline) and were then subsequently



IEEE TRANSACTIONS ON MEDICAL IMAGING 4

TABLE I
GROUP CHARACTERISTICS AND LUNG FUNCTION MEASUREMENTS FOR
THE HEALTHY AND THE COPDGROUP IN DATA SETA. THE NUMBERS

REPORTED ARE MEAN VALUES, WITH STANDARD DEVIATION IN

PARENTHESES AND RANGE IN SQUARE BRACKETS.

Healthy COPD

Age (years) 57 (5) [49-69] 59 (5) [50-71]

Gender (men/women) 172/128 175/125

Height (cm) 174 (9) [150-200] 174 (9) [150-195]

Weight (kg) 77 (14) [50-117] 74 (14) [43-126]

Pack years (years) 35 (12) [19-98] 38 (14) [19-126]

Smoking status
222/78 243/57

(current/former)

FEV1 (L) 3.13 (0.71) [1.26-4.91] 2.62 (0.70) [0.88-4.54]

FEV1%pred 1.00 (0.14) [0.58-1.41] 0.85 (0.17) [0.36-1.33]

FEV1/FVC 0.76 (0.04) [0.70-0.96] 0.63 (0.06) [0.37-0.70]

GOLD stage
300/0/0/0/0 0/197/93/10/0

(no/I/II/III/IV)
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Fig. 1. Construction ofAtrain2 from Atrain. All mild COPD cases and an
equal amount of healthy cases with the lowest FEV1%pred are excluded from
Atrain.

scanned annually (followup) for four consecutive years. An-
nual PFTs were also performed along with the CT images,
including the forced expiratory volume in one second (FEV1)
and the forced vital capacity (FVC). Subjects were re-scanned
after approximately three months in cases where non-calcified
nodules with a diameter of 5 to 15 mm were detected.

We perform experiments on two subsets of the DLCST
database that we denote data setA and B. These data sets
are defined in the following way:

Data setA. Two subject groups are selected at random using
the Global Initiative for Chronic Obstructive Lung Disease
(GOLD) criteria [1]. The first group consists of 300 subjects
without COPD (FEV1/FVC ≥ 0.7) and the second group
consists of subjects with GOLD stage I to III, or mild to
severe COPD, (FEV1/FVC < 0.7 and FEV1%pred>= 30%
where FEV1%pred is FEV1 corrected for age, sex, and height
[29]). Baseline CT images from the DLCST database are used.
The characteristics of the two groups are reported in Table I.

Data setA is randomly divided into three non-overlapping
subsets,Atrain, Avalidation, andAtest containing 100 healthy and
100 COPD subjects each. A second training set,Atrain2, is
constructed by excluding the mild COPD cases and an equal
amount of healthy cases with the lowest FEV1%pred from
Atrain as illustrated in Fig. 1. This is to exclude more uncertain
cases based on FEV1%pred. The number of subjects inAtrain2

is 62, 31 moderate or severe COPD subjects and 31 healthy
subjects.

Data setB. 50 CT image pairs from the DLCST database
where both images in a pair are from the same subject that has
been re-scanned for a suspicious nodule. All pairs have less
than 86 days between the acquisition dates, and we assume
progression of COPD to be negligible in this time interval.
There is no overlap between the subjects in this data set and
the subjects in data setA. Data setB is used to evaluate the
reproducibility and the robustness to inspiration level.

B. Training and Parameter selection

There are several parameters to select in the proposed
classification system and these are listed below together with
the possible parameter values considered:

• ROI size r × r × r with r = {21, 31, 41} voxels.
The considered ROI sizes are at the resolution of the
secondary pulmonary lobule that is approximately1−2.5
cm in diameter [30], and we assume the lung texture to
be homogeneous at this level;

• number of nearest neighbors in thekNN classifierk =
{25, 35, 45}. This was chosen as a trade-off between
regularization and speed. The computational complexity
of a k nearest neighbor query in the approximate nearest
neighbor library (ANN) [31] isO(kd log n) wheren is
the number of prototypes andd is the dimension. Further,
the results did not vary much within the considered range,
which is in between 1NN and the usual square root rule√
n =

√
200× 50 = 100NN [32];

• histogram dissimilarity measureL = {L1, L2, LEMD};
• the different base filters{(1), (2), (3), (4), (5), (6)} at

scalesσ = {0.6(
√
2)i}i=0,...,6 mm.

The best combination ofr, L, and k is learned using
Atrain or Atrain2 andAvalidation, and sequential forward feature
selection (SFS) [24] is used for determining the optimal
histogram subset, from a total ofNf = 56 histograms, for
each combination. The objective function in SFS is the area
under the receiver operating characteristic (ROC) curve (AUC)
computed from the ROIs inAvalidation classified usingkNN
with the ROIs inAtrain or Atrain2 as prototypes as well as the
current values ofr, L, andk.

The posterior probability of COPD in a CT image, i.e.,
P (COPD|I) estimated using (12), is used as the proposed
CT texture-based measure and is denotedkNN and kNN2,
depending on whetherAtrain or Atrain2 is used.

The number of ROIs sampled per image,Nr, is fixed to 50,
and the number of histogram bins isNb = r according to (8).
The adaptive histogram binning is computed fromAtrain using
a separate set of randomly sampled ROIs, 10 from each image.
kNN classification is performed using the approximate nearest
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neighbor (ANN) library [31] with the approximation error set
to zero to turn off the approximation part of the algorithm.

C. Evaluation Strategy

The trained CT texture-based measures,kNN and kNN2,
are evaluated onAtest by ROC analysis on subject level
and by Spearmans’s rank correlation with FEV1%pred and
FEV1/FVC. The relationship between the obtained CT-based
measure and PFTs as well as class label is further investigated
using regression-based adjustment for confounders.

We compare the obtained results to the densitometric mea-
sures RA and PD. The densitometric measures are computed
from the entire lung fields. RA corresponds to the amount
of voxels below a given HU threshold relative to the total
amount of voxels within the lung fields [4], and a threshold of
−950 HU is used in this study. This measure is sometimes
referred to as emphysema index or density mask. PD is
derived from the CT attenuation histogram as the HU value
at a certain percentile [6], and the 15th percentile is used
in this study. The two densitometric measures are denoted
RA950 and PD15, respectively. Both measures quantify the
amount of emphysema present in the lung. However, as for
the probabilistic output of the proposed approach, one still
needs to choose an operating point to turn the measure into
a hard classification of the image. For RA950, the parameter
varied to produce the different points on the ROC-curve is the
percentage of voxels below the HU threshold, and for PD15,
the parameter varied is the 15th percentile in HU.

D. COPD diagnosis and quantification

The whole learning framework is applied to data setA
for COPD diagnosis and quantification using the resulting
quantitative measure. The results of the experiment are shown
in Fig. 2 and in Table II. The proposed texture-based approach,
achieving an AUC of 0.713, is significantly better at discrim-
inating between CT images from healthy subjects and COPD
subjects than are the densitometric measures PD15 and RA950
(p < 10−4). This is also the case when comparingkNN and
the densitometric measures.kNN2 is significantly correlated
with both FEV1%pred and FEV1/FVC whereaskNN, PD15,
and RA950 are only significantly correlated with FEV1/FVC.
All four evaluated measures are capable of separating the two
subject groups (p < 0.05) according to a Wilcoxon rank sum
test. The AUC forkNN2 is significantly better than the AUC
for kNN, andkNN2 will therefore be used in the remaining
experiments.

Note that the densitometric measures are computed from
the full lung fields, and they are therefore based on more
information than are the proposed texture-based measure,
which is computed from 50 randomly sampled ROIs. The
performance of PD15 and RA950 when computed only from
the same 50 ROIs as used inkNN and kNN2, is slightly
worse than when computed from the entire lung fields with
AUC = 0.586 and AUC= 0.591, respectively.

The relationship between the CT-based quantitative mea-
sures,kNN2, RA950, and PD15, and PFTs is investigated
while adjusting for confounding factors, namely age, pack

TABLE II
COPDDIAGNOSIS AND QUANTIFICATION RESULTS. AUCS FROM THE

ROCANALYSIS WITH p-VALUES FOR DIFFERENCE INAUC WITH kNN2
ACCORDING TO A DELONG, DELONG, AND CLARKE-PEARSON’ S TEST

[34] SHOWN IN PARENTHESIS. CORRELATION WITH PFTS ACCORDING TO
SPEARMAN’ S RANK CORRELATIONρ WITH p-VALUES OF THE

CORRELATION IN PARENTHESIS.

Measure AUC ρ FEV1%pred ρ FEV1/FVC

kNN 0.690 (p = 0.045) -0.111 (p = 0.116) -0.368 (p < 10−4)

kNN2 0.713 ( - ) -0.151 (p = 0.033) -0.415 (p < 10−4)

RA950 0.596 (p < 10−4) -0.045 (p = 0.526) -0.206 (p = 0.004)

PD15 0.598 (p < 10−4) 0.049 (p = 0.492) 0.207 (p = 0.003)

1-specificity

se
n
si
ti
v
it
y

 

 

kNN
kNN2
RA950

PD15

Fig. 2. ROC curves from the experiment. The curves forkNN and kNN2
are based on (12).

years (one pack year is defined as 20 cigarettes smoked
per day for one year), gender, body mass index (BMI=
weight/(height/100)2), and smoking status [33]. For this
purpose the following multiple linear regression model is used

PFT= β0 + β1kNN2 + β2age+ β3pack years+

β4gender+ β5BMI + β6smoking status+ ε (13)

whereβi are the free parameters andε is a random component.
Age and pack years are measured in whole years, gender is
binary (0: male, 1: female), and smoking status is binary (0:
current smoker, 1: former smoker). The resulting regression
parameters estimated onAtest are shown in Table III together
with associatedp-values. All three CT-based measures signif-
icantly explain FEV1/FVC according to a t-test whereas none
of the CT-based measures significantly explain FEV1%pred.
Overall, all six models significantly explain the associated PFT
(p < 0.05) according to an F-test.

E. Stability of proposed measure

25% of the volume of the lung segmentation is on average
covered by 50 randomly sampled ROIs of size41× 41 × 41
voxels. Theoretically, this could be35% but some ROIs
are overlapping and some ROIs are partly outside the lung
segmentation. To inspect whetherNr = 50 is a sufficient
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TABLE III
RELATIONSHIP BETWEENCT-BASED MEASURES ANDPFTS WHILE
ADJUSTING FOR COMMON CONFOUNDERS FORCOPDUSING (13).

REGRESSION COEFFICIENTS ESTIMATED FROM THE TEST SET ARE SHOWN

WITH CORRESPONDINGp-VALUES FROM A TWO-TAILED T-TEST FOR
SIGNIFICANT RELATIONSHIP WITH THEPFT IN PARENTHESIS.

Explanatory variable FEV1%pred FEV 1/FVC

kNN2 (probability) -0.1793 (p = 0.086) -0.2856 (p < 10−4)

age -0.0034 (p = 0.157) -0.0020 (p = 0.075)

pack years -0.0013 (p = 0.104) -0.0006 (p = 0.112)

gender -0.0015 (p = 0.953) -0.0188 (p = 0.140)

BMI -0.0055 (p = 0.101) -0.0008 (p = 0.632)

smoking status 0.0980 (p < 10−4) 0.0466 (p < 10−4)

RA950 (%) -0.0021 (p = 0.287) -0.0033 (p < 10−4)

age -0.0040 (p = 0.085) -0.0031 (p = 0.009)

pack years -0.0015 (p = 0.070) -0.0009 (p = 0.034)

gender 0.0043 (p = 0.870) -0.0096 (p = 0.474)

BMI -0.0041 (p = 0.206) 0.0014 (p = 0.411)

smoking status 0.1025 (p < 10−4) 0.0539 (p < 10−4)

PD15 (HU) 0.0004 (p = 0.520) 0.0011 (p = 0.001)

age -0.0041 (p = 0.081) -0.0030 (p = 0.013)

pack years -0.0015 (p = 0.075) -0.0008 (p = 0.041)

gender 0.0085 (p = 0.748) -0.0086 (p = 0.520)

BMI -0.0042 (p = 0.200) 0.0013 (p = 0.444)

smoking status 0.0999 (p < 10−4) 0.0532 (p < 10−4)

1-specificity

se
n
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v
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0.713
0.692
0.687
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Fig. 3. ROC curves forkNN2 in ten repeated experiments with different
random ROI samplings on the same subject data splits. The legend shows the
AUC of each experiment.

number of samples in order to capture the characteristics in
data setA related to healthy subjects and COPD subjects,
we repeated the whole learning procedure ten times. In each
repeated procedure, the same data splits, i.e.,Atrain2, Avalidation,
andAtest, were used, but each time with different randomly
sampled ROIs. Fig. 3 shows the resulting ROC curves and the
AUCs are reported in the legend in the figure. The standard
deviation of the AUCs is0.014. The AUCs are rather similar,
and they are all larger than the AUCs of the densitometric
measures.

The selected parameters in the ten repeated experiments
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Fig. 4. The mean AUC forkNN2 as a function of the number of ROIs
used in (12) for test image classification. The error bars show the standard
deviation of the estimated mean AUC.

TABLE IV
NUMBER OF TIMES A CERTAIN PARAMETER IS SELECTED IN THE TEN

REPEATED EXPERIMENTS.

kNN2 ROI size histogram dissimilarity

k = 25 5 r = 10 0 L = L1 3

k = 35 3 r = 15 1 L = L2 0

k = 45 2 r = 20 9 L = EMD 7

are reported in Table IV. The tendency is smallk in the
kNN classifier, large ROI sizer, and EMD as histogram
dissimilarity measure. The most often independently se-
lected filters, reported as {filter, frequency}, are: {∇2(x; 0.6),
7}, { ||∇(x; 4.8)||2, 6}, { λ1(x; 4.8), 6}, {G(x; 2.4), 5},
{λ2(x; 0.85), 5}, { λ3(x; 4.8), 5}, {K(x; 4.8), 5}. Note that
a filter can maximally be selected 10 times, once for each
repeated experiment. SFS selects between 5 and 11 filters out
of the 56 possible filters, and the median number of filters
selected is 7.

Classifying the images inAtest using between 5 and 150
ROIs in (12), which are classified usingkNN2, further shows
that 50 samples from a test image is sufficient, as illustrated
in Fig. 4. Increasing the number of ROIs beyond 50 only
improves the AUC slightly. The mean AUC shown in Fig. 4 is
estimated from 1000 ROI subsets of size equal to the number
of ROIs considered, randomly sampled without replacement
from a pool of 150 possible ROIs. Note that the standard
deviation is 0 when the number of considered ROIs is 150,
since all 1000 subsets contain the same ROIs.

F. Reproducibility and robustness to inspiration level

The reproducibility of the proposed measure as well as the
robustness to inspiration level is evaluated and compared to
the densitometric measures on data setB. The trainedkNN
classifier from the the experiment in Section III-D is used to
represent the proposed measure.

The reproducibility of a measure is evaluated using Spear-
man’s rank correlation computed between measures obtained
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TABLE V
MEASURES OF REPRODUCIBILITY AND ROBUSTNESS TO INSPIRATION

LEVEL , BOTH USINGSPEARMAN’ S RANK CORRELATIONρ(·, ·). p-VALUES

OF THE CORRELATIONS ARE SHOWN IN PARENTHESES.

Measure ρ(m1,m2) ρ(m2 −m1, LV rd )

kNN2 0.83 (p < 10−4) 0.71 (p < 10−4)

RA910 0.82 (p < 10−4) 0.83 (p < 10−4)

PD15 0.81 (p < 10−4) -0.83 (p < 10−4)

from the first image,m1, and measures from the second image,
m2, in the 50 pairs of data setB. The results are reported in
the second column of Table V.kNN2 is as reproducible as
RA950 and PD15.

We use the lung volume (LV) in liters measured from the
segmentation as an indicator of the inspiration level. The
sensitivity to inspiration level is evaluated by Spearman’s rank
correlation between signed measurement difference,m2−m1,
and the difference in LV divided by the average denoted by
LV rd. The results are reported in the third column of Table V.
Differences in both the densitometric measures and forkNN2
are significantly correlated with LV difference. However, the
correlation with LV difference is lower forkNN2 compared
to the two densitometric measures, indicating slightly lower
sensitivity to inspiration level.

IV. D ISCUSSION AND CONCLUSION

The conducted experiments show that it is possible to train
a texture-based classifier to recognize COPD in pulmonary CT
images using supervised learning techniques in a fully auto-
matic, data-driven approach without any human intervention.
Hereby, all the limitations associated with manual labeling
are avoided. The meta-data driven labeling of ROIs, in this
study using PFTs, however, has other potential problems.
The disease patterns may be localized only in parts of the
CT images in subjects with COPD. For instance, paraseptal
emphysema is located in the periphery of the lung, cen-
trilobular emphysema is predominantly in the upper lobes,
while panlobular emphysema is predominantly in the lower
lobes [30]. Randomly sampled ROIs from COPD subjects will
therefore likely contain both diseased and healthy tissue where
the healthy tissue ROIs still receive the label COPD. The
reverse may also be the case in healthy subjects but is expected
to be less prominent. The classes in this weakly labeled
data set are therefore expected to overlap more compared to
classes in manually labeled data where experts have annotated
relatively clear examples of the different classes, and this poses
a challenging classification problem.

PFTs are insensitive to early stages of COPD [2], lack
reproducibility [3], and can be affected by other factors
limiting the airflow in the airways than those associated with
COPD. Despite these limitations, PFTs were used to obtain
labels in this study assuming that it was possible to learn, using
supervised learning, the textural COPD patterns in CT that are
related to the part of the disease that correlates with PFTs.
PFTs are also the current gold standard for COPD diagnosis
[1]. The results demonstrate that it is indeed possible to learn
the textural patterns associated with PFTs, and it was further

shown that the learned effect still holds when adjusting for
confounding factors such as age and smoking history.

Including mild COPD cases in the analysis deteriorates
performance in terms of AUC compared to [17] that excluded
these cases. There are three possibilities that could causethis
result. First, the disease may be picked up by PFTs before
textural changes appear in the lung tissue. Including mild
COPD, as diagnosed by PFTs, may in this case add data
that the proposed approach cannot distinguish. Secondly, PFTs
may pick up the disease at the same time as textural changes
appear, in which case including mild COPD simply produces a
harder classification problem since the signal is weaker in this
data. Thirdly, textural changes may appear before PFTs pick
up the disease. In this case, data with more uncertain labelsis
added when considering mild COPD cases. We hypothesize
that the third possibility is the case, since PFTs measure
the respiratory system as a whole as opposed to texture that
measures local changes in the lung tissue. Further, it has
been estimated that 30% of the lung must be destroyed by
emphysema before pulmonary function abnormalities become
evident [2] whereas loss of lung tissue is apparent earlier in a
CT image.

A two-class problem was defined by the two subject groups,
healthy (no COPD according to the GOLD criteria [1]),
and COPD (mild to severe COPD or moderate to severe
COPD according to the GOLD criteria [1]). However, other
possibilities exist, both on the type of problem to consider
and on the type of meta-data to use for group definitions.
One possibility would be to consider several or all of the
four GOLD stages [1] as separate groups, which is similar
in spirit to [35], for assessing GOLD stage or COPD severity.
However, regression may be more suitable for this purpose.
The proposed approach could also be used to gain a better
understanding of which textural patterns in the CT images that
are related to, e.g., different genotypes or markers from blood
samples by using genetic information or blood biomarkers to
define groups and apply the whole learning framework. This
may be expanded to further analyze how these patterns evolve
over time in longitudinal data.

The proposed approach is directly applicable in situations
where a large data set is available and an objective quantitative
measure for specifically that data is needed, as long as labeled
training data can be obtained. This could be in pharmaceutical
studies or in clinical research, for example. However, the
trained method is tied to data with the same or similar
characteristics. Application in clinical practice is lessstraight-
forward due to large variety in data, mainly caused by different
scanning protocols. Implementation in a workstation aimedat
clinical use would at least require a reliable segmentationof
the lung fields and an agreed upon set of base filters. Lung
segmentation algorithms are already implemented in several
commercial workstations. Based on the results of in this study
and on previous results [13], it could be the following base
filters: ||∇(x;σ)||2, ∇2(x;σ), andG(x;σ). The specific scale
at which the different base filters are applied can be tuned
according to the scanner settings, either automatically, e.g.,
using SFS, or by setting them according to scan parameters
such as the used reconstruction kernel and radiation dose.
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How the prototypes are selected for thekNN classifier
influences the performance of the resulting measure, as demon-
strated in the results of Section III-D. Systematically excluding
mild COPD cases and healthy cases with a low FEV1%pred
from the training set resulted in a significantly larger AUC.
This observation probably has a big impact in a clinical setting
where the data variability is large, and proper selection of
prototypes should be further investigated.

Classifiers were trained at the ROI level without including
knowledge about the subsequent fusion of the ROI posterior
probabilities using (12). The rationale is that we would like
to capture the local texture information and use this for
quantification. Although the proposed approach works well as
illustrated in the results, it remains an open research question
whether training locally followed by posterior fusion is the
best approach when the final goal is quantification at CT image
level. An alternative approach would be to take CT image level
information into account during training, e.g., by adapting the
objective function for SFS to use (12) instead of (9).

COPD comprises two main components, small airway dis-
ease and emphysema [1]. The proposed approach measures
parenchymal texture and therefore mainly targets emphysema.
However, small airway disease is included to some extent
since the lung fields segmentation includes the small airways
and since the labels are obtained from PFTs, which are
affected by both components. The airway information could
be targeted more explicitly by combining the output of the
proposed approach with measurements computed directly on
the segmented airway tree, e.g., [36], which may provide a
more accurate measure of COPD.

In [13] it was shown that rotation invariant local binary
patterns (LBPs) and a rotation invariant filter bank based
on Gaussian derivatives achieved similar performance on an
emphysema quantification task in 2D CT images. We therefore
chose to use a superset of the filter bank in this study as
this texture descriptor is directly extendable to 3D. However,
as mentioned in [13], some approximate 3D extensions of
rotation invariant LBP do exist.

In conclusion, we have proposed a fully automatic, data-
driven approach for texture-based quantitative analysis of
COPD in pulmonary CT. The obtained texture-based measure
demonstrates superior performance in discriminating between
subjects with and without COPD compared to the com-
mon densitometric measures RA and PD, with an AUC of
0.713 compared to 0.596 and 0.598, respectively. Further, the
proposed approach is as reproducible as the densitometric
measures, and there are indications that it correlates better
with lung function and is less sensitive to inspiration level
– a major source of variability in computerized quantitative
CT measures. Since the method does not rely on labels
annotated by human experts, the resulting CT image-based
measure is objective and can easily be applied to analyze large
data sets. Overall, the proposed approach results in a robust
and objective measure that can facilitate better computerized
quantification of COPD in pulmonary CT.
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