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Abstract

This chapter presents a comparative study of texture classification in computed

tomography images of the human lungs. Popular texture descriptors used in the

medical image analysis literature for texture-based emphysema classification are

described and evaluated within the same classification framework. Further, it is

investigated whether combining the different descriptors is beneficial.

1 Introduction

Computed tomography (CT) images of the human lungs show intensity variations

that form certain repeated patterns, also referred to as texture. Some of these vari-

ations are due to noise and artifacts, but others are due to properties of the imaged

tissue. Abnormal lung tissue can often be distinguished from healthy lung tissue

based on its texture. The texture of the abnormal lung tissue depends on the type

and severity of the abnormality. Three examples of regions of lung tissue extracted

from CT are presented in Figure 1, an example of normal, healthy lung tissue in

(a) normal tissue (b) emphysema (c) emphysema

Figure 1: 51 × 51 pixel regions, from CT images, with examples of normal and emphy-
sematous lung tissue. The displayed image intensities are linearly scaled between -1024
Hounsfield units (HU) (black) and -300 HU (white).
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(a) emphysema 1 (b) emphysema 2

(c) intensity histogram 1 (d) intensity histogram 2

Figure 2: Artificial examples of two abnormal patterns with different appearance in CT
and the corresponding intensity histograms. Gray is normal tissue and black are air
pockets due to missing tissue. The intensity histograms are rather similar for the two
cases, even though the two abnormal patterns look very different.

Figure 1(a) and two examples of abnormal lung tissue, in this case emphysema, in

Figures 1(b) and 1(c). The normal lung tissue exhibits a noisy, gray pattern with

thin, bright structures, which are mainly vessels and airway walls. The abnormal

lung tissue is in this case characterized by black blobs, due to missing lung tissue,

of varying sizes within the normal appearing tissue.

There exists no generally agreed upon definition of texture, and the definitions

provided in the literature often depend on the particular application at hand [15,

37]. When referring to texture in this chapter, we loosely mean: a distribution of

measure(s) of local structure, as measured in a region. In the extreme case, the

measure is the pixel values, and we simply have the histogram of intensity values

computed in the region. Purely intensity-based descriptors may, however, not be

sufficient to discriminate abnormal lung tissue as illustrated in Figure 2. Even

though the textural appearance of the two example patterns is rather different, the

intensity histograms look very similar. This chapter focuses on texture classification
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in pulmonary CT, and all the considered texture descriptors, except for the purely

intensity-based descriptors presented in Section 2.1, use interactions among pixels

and should therefore be able to discriminating the two example patterns.

Several popular texture descriptors used in the medical image analysis literature

for texture-based classification of abnormal lung tissue, e.g., for discriminating be-

tween textures of the types shown in Figure 1, are described and evaluated within

the same classification framework. The descriptors are evaluated on a case-study of

emphysema classification in CT regions of interest (ROIs). However, the presented

descriptors can also be used for other texture analysis tasks as well, including tex-

ture segmentation and texture synthesis [15, 37]. Further, a classification system

capable of classifying abnormality can serve as a basis for different medical image

analysis tasks such as texture-based detection or quantification of abnormality in

complete scans [18, 28, 30, 32, 34].

Section 2 describes the different texture descriptors, and Section 3 presents the

classification problem, the experimental setup including the general classification

system used for all descriptors, as well as the obtained results. Finally, Section 4

concludes the chapter.

2 Texture Descriptors

There exist many texture descriptors in the image processing and pattern recogni-

tion literature, see [8, 15, 16, 37], for example. Many of these have also been used for

texture-based classification in pulmonary CT [2, 7, 18, 20, 21, 27, 29–34, 38, 39, 45],

and in this chapter we focus on the descriptors most often used for this purpose.

The following descriptors are considered:

• the intensity histogram (INT). Section 2.1. Used in [2, 18, 20, 21, 27, 29–31, 34,

38, 39, 45];

• local binary patterns (LBPs). Section 2.2. Used in [32–34];

• a Gaussian filter bank (GFB). Section 2.3. Different variants are used in

[27, 29–31, 34];

• gray-level co-occurrence matrices (GLCMs). Section 2.4. Used in [2, 18, 20,

21, 34, 38, 39, 45];

• gray-level run-length matrices (GLRLMs). Section 2.5. Used in [2, 18, 20, 21,

34, 38, 39, 45];

• and finally, textons. Section 2.6. Used in [7].
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Figure 3: Intensity histograms computed from the regions in Figure 1(a) (left) and Figure
1(b) (right). The histograms are quantized into Nb = 9 bins.

We focus on 2-D versions of the texture descriptors since the evaluation is per-

formed on a data set of two-dimensional CT images. However, possible 3-D versions

will also be discussed briefly in the end of the chapter in Section 4. Where possible,

we consider rotation invariant versions of the descriptors since this property is often

enforced in texture-based classification in CT. See [2, 18, 30, 34, 39], for example.

The representations obtained using the different texture descriptors of the central

31 × 31 pixel parts of the two example regions in Figure 1(a) and Figure 1(b)

are shown in the following subsections to illustrate how the different descriptors

represent the information in the two regions.

2.1 Intensity Histogram

The intensity histogram (INT) is a simple descriptor of independent pixel infor-

mation in the image, and either the full histogram or summarizing measures can

be used. Several studies use moments of the intensity distribution as features

[2, 18, 20, 21, 34, 38, 39, 45] or of the distribution of smoothed intensities [27, 29, 34],

while others use the full histogram of (smoothed) intensities [30, 31, 34]. The most

commonly used summarizing measures are as follows: the mean intensity, or first

moment

µ(I) =
1

Np

Np
∑

i=1

I(xi) (1)

where I is an image region, xi is pixel within the region, and Np is the number of

pixels in the region; and the standard deviation of the intensity, or square root of

the second central moment

σ(I) =

√

√

√

√

1

Np − 1

Np
∑

i=1

(I(xi)− µ(I))2. (2)
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(a) LBP2(·; 1, 8)ri (b) LBP2(·; 1, 8)riu2

(c) LBP2(·; 1, 8)ri (d) LBP2(·; 1, 8)riu2

Figure 4: Joint LBP and intensity histograms using R = 1, P = 8, and NB = 9.
The histograms in the top row are computed from the region in Figure 1(a) and the
histograms in the bottom row are computed from the region in Figure 1(b). Intensity is
in the horizontal direction and LBP code is in the vertical direction. Black is high density
whereas white is low density.

Further, a measure of asymmetry called skewness, or the third standardized central

moment

skew(I) =
1

Np

Np
∑

i=1

(

I(xi)− µ(I)

σ(I)

)3

(3)

as well as a measure of peakedness called kurtosis, or the fourth standardized central

moment

kurtosis(I) =
1

Np

Np
∑

i=1

(

I(xi)− µ(I)

σ(I)

)4

− 3, (4)

are often used.

Both the full intensity histogram as well as the four mentioned moments will be

considered in the experiments.

Figure 3 shows intensity histograms computed from the example regions in Fig-

ure 1(a) and Figure 1(b). As expected, there is more mass in the low-intensity part

of histogram of the emphysema region compared to the histogram computed from

the normal lung tissue.
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2.2 Local Binary Patterns

Local binary patterns (LBPs) were originally proposed by Ojala et al. as a gray-

scale invariant measure for characterizing local structure in a 3× 3 pixel neighbor-

hood [16]. Later, a more general formulation was proposed that further allowed for

multi-resolution analysis, rotation invariance, and vast dimensionality reduction by

considering only so-called “uniform” patterns [17].

The LBPs are obtained from an image region I by thresholding samples in a

local neighborhood with respect to each center pixel intensity and are given by

LBP (x;R,P ) =

P−1
∑

p=0

H(I(xp)− I(x))2p (5)

where x is the center pixel, xp = [−R sin(2πp/P ), R cos(2πp/P )]T + x are P lo-

cal samples taken at a radius R around x, and H(·) is the Heaviside function.

By choosing a fixed sample position on the circle as the “leading bit”, the thresh-

olded samples can be interpreted as bits, and a P bit binary number, the LBP

code, can be computed. The LBP codes computed in each pixel in the region are

accumulated into a histogram, the LBP histogram, where each unique LBP code

corresponds to a particular histogram bin. Different local structures in the region

such as edges, corners, spots, etc., are assigned different LBP codes, and the LBP

histogram, therefore, captures many structures in one unified framework. The num-

ber of samples, P , governs the number of bins in the LBP histogram, e.g., P = 8

results in 28 = 256 bins. By varying the radius R and the number of samples P , the

structures are measured at different scales, and this way LBP allows for measuring

large scale structures without smoothing effects as would for example occur with

Gaussian-based filters. As long as the relative ordering among the gray-scale values

in the samples does not change, the output of (5) stays the same; hence, LBPs are

invariant to any monotonic gray-scale transformation.

Rotation invariance can be achieved by “rotating the circle” until the lowest

possible binary number is found

LBP ri(x;R,P ) = min
i
(ROR(LBP (x;R,P ), i)) (6)

for i = 0, . . . , P − 1. ROR(b, i) performs i circular bit-wise right shifts on the P -bit

binary number b. (6) assigns the same LBP code to similar structures of different

orientations, which also has the effect of reducing the dimensionality of the LBP

histogram, e.g., to 36 bins for P = 8.

The dimensionality of the LBP histogram can further be reduced by only con-
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sidering the so-called “uniform” patterns, which are local structures giving rise to

at most two bit changes in the LBP code, and assign the remaining structures a

designated “noise” code. This is done in the following way:

LBP riu2(x;R,P ) =

{

∑P−1

p=0
H(I(xp)− I(x)) if U(LBP (x;R,P )) ≤ 2

P + 1 otherwise,
(7)

where

U(LBP (x;R,P )) = |H(I(xP−1)− I(x))−H(I(x0)− I(x))|+
P−1
∑

p=1

|H(I(xp)− I(x))−H(I(xp−1)− I(x))|. (8)

(8) counts the number of bit transitions, from 0 to 1 or from 1 to 0, that are

encountered when traversing the P thresholded samples on the circle. The resulting

LBP histogram contains 10 bins for P = 8.

Since LBPs by design are invariant to any monotonic intensity transformation,

important discriminative information may be left out when applied in CT. The

joint LBP and intensity histogram has been proposed as a solution to this problem

[32–34], resulting in a histogram where one dimension measures structure whereas

the other dimension measures at which densities the different structures occur. The

histogram is obtained by computing the LBP codes in all pixels in the image, ac-

cording to (6) or (7), and forming the joint histogram between the resulting LBP

codes and the intensities in the corresponding center pixels I(x). We denote these

operators LBP2ri and LBP2riu2, respectively. These are the operators that we will

be using in the experiments.

Figure 4 shows joint LBP and intensity histograms computed from the example

regions in Figure 1(a) and Figure 1(b) using LBP2(·; 1, 8)ri and LBP2(·; 1, 8)riu2.
The LBPs, or local structures, generally reside at lower intensities for emphysema

compared to healthy tissue, which is to be expected.

2.3 Gaussian Derivative-Based Filter Bank

Filtering an image region using a bank of filters and representing the resulting

filter response images using histograms or moments is another commonly employed

texture descriptor [40, 47]. We evaluate a multi-scale Gaussian filter bank (GFB)

comprising filters based on the Gaussian function and its derivatives [36]. The

filtering is done by convolving the image region with the two-dimensional Gaussian
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(a) G(·, 0.5) (b) ||∇G(·, 1)||2

(c) G(·, 0.5) (d) ||∇G(·, 1)||2

Figure 5: GFB filter response histograms obtained using the filters G(·, 0.5) and
||∇G(·, 1)||2. The filter responses are quantized into Nb = 9 bins. The histograms in
the top row are computed from the region in Figure 1(a) and the histograms in the
bottom row are computed from the region in Figure 1(b).

function

G(x;σ) =
1

2πσ2
exp

(

− ||x||2
2

2σ2

)

(9)

where σ is the standard deviation, or scale, and || · ||2 is the L2-norm. Increasing σ

results in the region being increasingly blurred, which allows analysis of the image

structure at larger scales.

Letting Lx and Ly denote the first order derivatives of the convolved image region

L = I ∗G(x;σ), and Lxx, Lyy and Lxy denote the second order derivatives, the four

base filters in the GFB considered in this chapter are as follows: the Gaussian

function (9) itself; gradient magnitude

||∇G(x;σ)||2 =
√

L2
x + L2

y; (10)

the Laplacian of the Gaussian

∇2G(x;σ) = Lxx + Lyy; (11)
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and Gaussian curvature

K(x;σ) = LxxLyy − L2

xy. (12)

These four filters are used in [34] and are common descriptors of local structure

invariant to rotation. The Gaussian function itself is included in order to allow the

GFB descriptor to take CT density information into account [29, 34].

From a filtered CT image region, a filter response histogram can be computed

and used to characterize the texture [30, 34]. Alternatively, moments can be used

[28, 29]. We experiment with both approaches in this chapter, and use the four

moments defined in Section 2.1, namely, the mean (1), standard deviation (2),

skewness (3), and kurtosis (4) of the filter responses computed in the region, as well

as the full filter response histograms.

Figure 5 shows GFB filter response histograms computed from the example re-

gions in Figure 1(a) and Figure 1(b) using the two different filters G(·, 0.5) and

||∇G(·, 1)||2. As expected, there is more mass in the low-intensity part of the his-

togram computed from the emphysema region compared to the histogram computed

from the normal lung tissue, see Figure 5(a) and Figure 5(c). The emphysema re-

gion is also characterized by having edges at a different strength, due to transitions

from air pockets to lung tissue, compared to the normal lung tissue, see Figure 5(b)

and Figure 5(d).

2.4 Gray-Level Co-Occurrence Matrices

Summarizing measures computed from a gray-level co-occurrence matrix (GLCM)

are classical texture features [8]. An element p(i, j; θ, d) of a GLCM computed from

an image region I expresses the number of times a pixel x with gray-level i occurs

jointly with a pixel y with gray-level j in I, where y is positioned relative to x

according to a displacement vector defined be an angle θ and a distance d. In this

chapter, we consider symmetric GLCMs, meaning that p(i, j; θ, d) = p(j, i; θ, d). Of

the summarizing measures originally proposed in [8], the three most commonly used

are: angular second moment or uniformity of energy (UE)

UE(p; θ, d) =

Nb
∑

i=1

Nb
∑

j=1

p(i, j; θ, d)2 (13)

9



(a) p(·, ·; 90, 1) (b) p(·, ·; 135, 2)

(c) p(·, ·; 90, 1) (d) p(·, ·; 135, 2)

Figure 6: GLCMs using the two displacements (θ = 90◦, d = 1) and (θ = 135◦, d = 2).
The GLCMs in the top row are computed from the region in Figure 1(a) and the GLCMs
in the bottom row are computed from the region in Figure 1(b). The intensities are
quantized into Nb = 9 bins. Black is high density whereas white is low density.

where Nb is the number of bins that the gray-levels in the region are quantized into;

inertia or contrast (C)

C(p; θ, d) =

Nb
∑

i=1

Nb
∑

j=1

|i− j|2p(i, j; θ, d); (14)

and homogeneity or inverse difference moment (IDM)

IDM(p; θ, d) =

Nb
∑

i=1

Nb
∑

j=1

p(i, j; θ, d)

1 + |i− j|2 . (15)

These measures are all used in [2, 18, 20, 21, 34, 38, 39, 45]. We further include cor-

relation (CORR)

CORR(p; θ, d) =

Nb
∑

i=1

Nb
∑

j=1

(i− µi)(j − µj)p(i, j; θ, d)

σiσj
(16)

where µi =
∑Nb

i=1

∑Nb

j=1
ip(i, j; θ, d) and σi =

√

∑Nb

i=1

∑Nb

j=1
p(i, j; θ, d)(i − µi)2 is

the GLCM mean and the GLCM standard deviation, respectively. Note, that since

symmetric GLCMs are considered, µi = µj and σi = σj . CORR(θ, d) is used in

[18, 34, 38, 39, 45].
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(a) p(i, j; 0) (b) p(i, j; 135)

(c) p(i, j; 0) (d) p(i, j; 135)

Figure 7: GLRLMs using the two orientations θ = 0◦ and θ = 135◦. The GLRLMs in the
top row are computed from the region in Figure 1(a) and the GLRLMs in the bottom row
are computed from the region in Figure 1(b). The intensities are quantized into Nb = 9
bins and the maximum run length is MRL = 10. Intensity is in the vertical direction
and run-length is in the horizontal direction. Black is high density whereas white is low
density.

The two parameters θ and d govern the GLCM, and different values of these

parameters result in different GLCMs capturing spatial pixel intensity relations in

various directions and at various ranges. Some studies average the summarizing

measures across different displacements, which brings down the dimensionality of

the descriptor and makes it scale and rotation invariant, see [2, 18], for example. We

evaluate the common approach of using summarizing measures, but also experiment

with using the full GLCMs. Both the summarizing measures and the full GLCMs are

averaged across orientation to achieve rotation invariance, but not across distance.

GLCMs for two different displacements computed from the example regions in

Figure 1(a) and Figure 1(b) are shown in Figure 6. The GLCMs are more peaked,

due to smaller differences between neighboring pixel intensities, and the mass is

shifted towards the lower intensities, for the emphysema case compared to the

healthy tissue case.

2.5 Gray-Level Run-Length Matrices

Summarizing measures computed from a gray-level run-length matrix (GLRLM)

is another set of classical texture features [8]. An element p(i, j; θ) of a GLRLM

computed from an image region I expresses the number of times j consecutive pixels
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of the same gray-level i, in a given direction θ, occur in I. The five most commonly

used summarizing measures of GLRLMs are: short run emphasis (SRE)

SRE(p; θ,MRL) =
1

Nr

Nb
∑

i=1

MRL
∑

j=1

p(i, j; θ)

j2
(17)

where Nb is the number of bins that the gray-levels in the region are quantized into,

MRL is the maximum run-length considered, and Nr =
∑Nb

i=1

∑MRL
j=1

p(i, j; θ) is

the total number of runs in the image; long run emphasis (LRE)

LRE(p; θ,MRL) =
1

Nr

Nb
∑

i=1

MRL
∑

j=1

p(i, j; θ)j2; (18)

gray-level nonuniformity (GLN)

GLN(p; θ,MRL) =
1

Nr

Nb
∑

i=1

(

MRL
∑

j=1

p(i, j; θ)

)2

; (19)

run-length nonuniformity (RLN)

RLN(p; θ,MRL) =
1

Nr

MRL
∑

j=1

(

Nb
∑

i=1

p(i, j; θ)

)2

; (20)

and run percentage (RP)

RP (p; θ,MRL) =
1

Np

Nb
∑

i=1

MRL
∑

j=1

p(i, j; θ) (21)

where Np is the number of pixels in the region. These five measures are used in

[2, 18, 20, 21, 34, 38, 39, 45]. The direction of the runs, θ, and the number of bins,

Nb, that the intensities are quantized into, are the only parameters for the com-

putation of the GLRLM. The maximum run-length considered, MRL, is an extra

parameter for the computation of the summarizing measures, and MRL effectively

truncates the GLRLM in the run-length direction. Also note that Nr is influenced

by MRL, since this is the total number of runs in the truncated GLRLM. Most

studies average the summarizing measures across orientations, which decreases the

dimensionality of the descriptor and makes it rotation invariant. We evaluate the

common approach of using summarizing measures, but also experiment with us-

ing the full GLRLMs. Both the summarizing measures and the full GLRLMs are

averaged across orientation.
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(a) TS = 3, k = 30 (b) TS = 3, k = 20

(c) TS = 3, k = 30 (d) TS = 3, k = 20

Figure 8: Texton histograms using TS = 3 in conjunction with k = 30 or k = 20. The
Texton histograms in the top row are computed from the region in Figure 1(a) and the
histograms in the bottom row are computed from the region in Figure 1(b).

GLRLMs computed from the example regions in Figure 1(a) and Figure 1(b) are

shown in Figure 7. The emphysema case contains longer runs at a lower intensity,

which is related to areas with missing lung tissue, compared to the healthy case.

2.6 Textons

Textons were first introduced by Julesz in his influential paper [10] as fundamental

primitives capable of representing texture. Based on Julesz’ theory, Leung and Malik

developed a complete texture classification system [13]. They defined 2-D textons

as the cluster centers in filter bank responses, which made it possible to generate

textons from the images automatically as the prototypes representing the source

textures. These textons formed a codebook from which a texton histogram could

be constructed for each image using a similarity measure. This work was further

improved by Schmid [23, 24], Cula and Dana [3], and Varma and Zisserman [41–

43]. The texton histogram computed from an image is a fully data-driven texture

descriptor. This is different from the other descriptors considered in this chapter,

which are based on pre-specified rules for which only the associated parameters are

optimized on the training data.

There are three main representations associated with the texton-based approach
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in the literature, filter banks [3, 13, 42], raw pixel representation [43], and Markov

random field representation, where the probability of the central pixel value is con-

ditioned on the pixel values in the neighboring pixels [43]. However, irrespective of

the representation used to describe local image information, the descriptor construc-

tion consists of two stages: construction of a texton codebook and computation of

a texton frequency histogram.

To construct the texton codebook, small-sized local patches of size TS × TS

are randomly extracted from each image region in the training set and converted

to an appropriate representation. The patches are subsequently aggregated over all

images in a class and clustered using a clustering algorithm. The cluster centers

obtained form a codebook of textons representing the class of textures. The size of

the final codebook thus depends on the number of cluster centers Nc as well as the

number of classes. For example, for a three-class problem with 30 cluster centers

per class, 3× 30 = 90 textons are generated in the codebook. The texton codebook

is used to compute texton histograms, both for the training data and the test data.

The texton frequency histogram is defined as a histogram of the same size as the

size of the codebook where each bin is associated with one of the learned textons

in the codebook. A histogram is computed from an image region by extracting

patches of the same size as the textons, one centered on each pixel in the region.

Each extracted patch is converted to the same representation as is used in the texton

codebook and compared to all textons in the codebook using a similarity measure.

The bin corresponding to the closest texton is updated with a count. The final

histogram is normalized.

In this chapter, the textons are based on a raw pixel representation, and the

codebook thus consists of cluster centers in a feature space of dimension TS × TS

where each dimension corresponds to the intensity in a certain pixel. The texton

frequency histogram is therefore variant to both rotation and scale. Clustering is

performed using the k-means algorithm [9], and the Euclidean distance in this space

is used as similarity measure between the small patches, both in k-means and in the

texton histogram formation.

Figure 8 shows texton histograms from the example regions in Figure 1(a) and

Figure 1(b). It is not straightforward to interpret the texton histograms, since the

ordering of the bins is not meaningful. Each bin merely corresponds to a certain

texton in the codebook and neighboring bins need not be similar. For Nc = 10, the

left-most 10 bins correspond to cluster centers computed from the healthy samples

in the training set, the center 10 bins correspond to one type of emphysema, and the

right-most 10 bins correspond to another type of emphysema. As can be seen, the
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histograms computed from the healthy region contain most mass in the left-most

part, and the histograms computed from the emphysema region contain most mass

in the central part, which is the correct emphysema type.

3 Evaluation

The experiments are performed in Matlab using in-house developed code as well as

publicly available implementations of some of the descriptors. LBPs are computed

using lbp.m1 and getmapping.m2. GLCMs are computed using version 6.2 of Math-

works’s own Image Processing Toolbox for Matlab. GLRLMs are computed using

the Gray Level Run Length Matrix Toolbox3.

3.1 A Case-Study: Classification of Emphysema in CT

The different texture descriptors are evaluated and compared on the classification

of different types of emphysema in CT regions of interest (ROIs). Emphysema is

one of the main components of chronic obstructive pulmonary disease (COPD), the

fourth leading cause of morbidity and mortality in the United States alone, which

is predicted to rise from its ranking in 2000 as the 12th most prevalent disease

worldwide to the 5th, and from the 6th most common cause of death worldwide to

the 3rd, by 2020 [1, 22]. Automated emphysema classification may lead to better

sub-typing, diagnosis, and understanding of the development of emphysema, but

more importantly, to a better assessment of COPD.

Emphysema lesions, or bullae, are visible in CT images as areas of abnormally

low attenuation values close to that of air, and are often characterized according

to their subtype and extent. Subtyping is performed according to the morphol-

ogy, or textural appearance, of the emphysema patterns, and can according to

a common definition be classified into three subtypes, or patterns, [44]. These

subtypes are the following: centrilobular emphysema (CLE), defined as multiple

small low-attenuation areas; paraseptal emphysema (PSE), defined as multiple low-

attenuation areas in a single layer along the pleura often surrounded by interlobular

septa that is visible as thin white walls; and panlobular emphysema (PLE), defined

as a low-attenuation lung with fewer and smaller pulmonary vessels. Examples of

emphysema, more specifically CLE, as well as normal tissue (NT), are shown in

1version 0.3.2 obtained from http://www.ee.oulu.fi/mvg/page/lbp_matlab
2version 0.1.1 obtained from http://www.ee.oulu.fi/mvg/page/lbp_matlab
3version 1.0 obtained from http://www.mathworks.com/matlabcentral/fileexchange/17482-gray-

level-run-length-matrix-toolbox
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Figure 1.

Current quantitative analysis of emphysema from CT relies only on the intensity

information in individual pixels [25] and is not able to distinguish between the two

abnormal patterns in Figure 2. This includes measures such as the relative area, also

called emphysema index, and the percentile density [25]. In recent years, various

studies have looked into using richer texture descriptors for improving classification

of emphysema [2, 7, 18, 20, 21, 29–34, 38, 39, 45].

3.2 Data

The data comes from an exploratory study carried out at the Department of Respi-

ratory Medicine, Gentofte University Hospital [26] and consist of CT images of the

thorax acquired using General Electric equipment (LightSpeed QX/i; GE Medical

Systems, Milwaukee, WI, USA) with four detector rows. A total of 75 high resolu-

tion CT (HRCT) slices were acquired by scanning 25 subjects in the upper, middle,

and lower lung. The CT scanning was performed using the following parameters:

in-plane resolution 0.78 × 0.78 mm, 1.25 mm slice thickness, tube voltage 140 kV,

and tube current 200 mAs. The slices were reconstructed using an edge enhancing

(bone) algorithm.

An experienced chest radiologist and a CT experienced pulmonologist each as-

sessed the leading pattern, either NT, CLE, or PSE, in each of the 75 slices, and

consensus was obtained in cases of disagreement. This resulted in 26 NT slices, 21

CLE slices, and 28 PSE slices. 168 non-overlapping 31× 31 pixel ROIs were subse-

quently manually annotated in the HRCT slices by indicating the center position of

the ROIs. The following three classes were considered: NT (59 observations), CLE

(50 observations), and PSE (59 observations). The 168 labeled CT ROIs is the data

set used throughout the evaluation, and this is also the data set used in [34].

3.3 Classification Setup

All texture descriptors are applied using the same classification setup, which consists

of a supervised classifier, the k nearest neighbor classifier (kNN) [5, 9] where k is

optimized on the training data. When a descriptor comprises several features or

several feature histograms, an optimal subset is found by feature selection using the

training data.

The kNN classifier is a flexible density-based classifier that makes no assump-

tions about the distribution of the data samples. Both unimodal and multimodal

class distributions are automatically handled, as well as multiple classes as is the
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case in the experiments carried out in this chapter. Further, both a vector space

representation of the objects as well as a distance representation of the objects can

easily be handled by kNN. This is practical in the experiments conducted, since two

representations are considered for each texture descriptor, where possible: directly

using the distances computed between full histograms, e.g., distances between full

GLCMs, and classification in a feature vector space where the objects are repre-

sented by summarizing measures computed from the histograms, e.g., using (13),

(14), (15), and (16) computed from the GLCMs.

An ROI x is classified by estimating the posterior probabilities P (Ci|x) of the

m different classes Ci, i = 1, . . . ,m, given that the input object is x, using the

moderated kNN estimate [11]

P (C|x) = kc(x) + 1

k +m
(22)

where kc(x) is the number of neighbors of x belonging to class C among the k

nearest neighbors. The parameter k determines how many prototypes are used in the

estimation of P (C|x), and k effectively determines the smoothness of the decision

boundary of the classifier. A larger k leads to a more smooth decision boundary.

The moderated kNN posterior estimate [11] is used since classifier combination [9]

for combining the output of different descriptors will be investigated later in the

chapter.

The kNN estimate in (22) produces a soft classification output. A hard classifi-

cation, i.e., a specific labeling of objects is done by maximum a posteriori (MAP)

classification [9], where an input object x is assigned to class Ci if

P (Ci|x) > P (Cj|x) for all j 6= i. (23)

The NT class is selected in case of a draw.

The distance between the objects used in kNN is computed differently depending

on the representation.

When using texture descriptors based on summarizing measures, the “tradi-

tional” approach to pattern recognition is taken [6], and the kNN classifier is ap-

plied in a feature vector space where each ROI is a point, positioned according to

its corresponding feature values. We use the L2-norm between the feature vectors

as object distances in the kNN classifier

dm(x,y) =

√

√

√

√

n
∑

i=1

(xi − yi)2 (24)
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where ROI x is represented by a vector of n values x = [x1, x2, . . . , xn]
T .

When a texture descriptor based on one or several histograms is used, classifi-

cation can be based on direct distance computations between the histograms. This

can be seen as a “featureless” representation where object distances are used directly

in classification [6]. The L1-norm is used as histogram distance measure, which is

equivalent to the histogram intersection, a traditional histogram distance measure

in computer vision [35]. When the texture descriptor is based on several histograms,

the distances between the individual histograms are combined by summation, giving

rise to the following combined histogram distance measure

dh(x,y) =

Nf
∑

i=1

Nb
∑

j=1

|fi(x)j − fi(y)j| (25)

where fi(·) is the ith histogram generating function, fi(·)j is the j’th bin of the i’th

histogram, Nf is the number of histograms in the texture descriptor, and Nb is the

number of histogram bins.

In cases where the descriptor consists of a set Y of several summarizing measures

or histograms, these are optimized on the training data by feature selection. Here the

goal is to find a subset X ⊆ Y that is optimal according to some objective function.

In this work, SFS [9], a greedy combinatorial optimization search strategy, is used

with the classification accuracy of the kNN classifier using the current representation

Xi as objective function. One starts with an empty set X0 = ∅ and iteratively

evaluates each of the candidate measures or histograms x in conjunction with the

existing subset x∪Xi−1, x ∈ Y \Xi−1 according to the objective function. The best

performing combination of current subset Xi−1 and candidate feature x̂ is retained

producing Xi = x̂ ∪ Xi−1. This procedure is iterated until adding a new feature

starts increasing the classification error.

3.4 Training and Parameter Selection

There are several parameters to set in the classification system, some of which

are fixed while the remaining are optimized on the training data. An ROI size of

31 × 31 pixels is used in all experiments for all texture descriptors. The number

of histogram bins used when quantizing intensity in LBPs, GLCMs, GLRLMs, and

INT, or when quantizing filter responses in the GFB is fixed according to the fol-

lowing rule: Nb = ⌊ 3

√

Np⌋ where Np is the number of pixels in the ROI. In all

experiments, we have Nb = ⌊ 3
√
312⌋ = 9 bins. In INT, GFB, and for the intensity

part of LBPs, we employ an adaptive binning principle similar to that of [16]; the
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Table 1: The texture descriptors together with their corresponding parameters, and the parameter values considered. The
parameters are: (R,P ) (LBP radius and number of samples pair, different pairs are considered for rotation invariant and
uniform LBP indicated by ri and riu2.), σ (GFB scale), θ (orientation in GLCMs and GLRLMs), d (distance in GLCMs),
MRL (maximum run length in GLRLMs), Nc (number of cluster centers per class in in textons), TS × TS (texton size),
Nb (number of histogram bins, used both for quantizing image gray-levels in LBPs, GLCMs, GLRLMs, and INT, and for
quantizing filter responses in the GFB). ‘Number of features’ is the number of candidate histograms or summarizing measures
in the descriptor. An optimal subset of these is found using SFS. ‘Feature dimension’ is the dimensionality of one candidate
“feature” considered in SFS. For histograms, this is the number of bins. For summarizing measures, this is one. When
both full histograms and summarizing measures are considered for a particular descriptor, this is indicated by h/m, and the
corresponding number of features and feature dimension(s) are shown for both representations separated by a forward slash.

Descriptor Parameters Number of features Feature dimension

LBP

(R,P )ri = {(1, 8), (2, 8), (3, 8)}
8 {36× 9, 10× 9, 18× 9, 26× 9}(R,P )riu2 = {(1, 8), (2, 16), (3, 24), (4, 24), (5, 24)}

Nb = 9

GFBh/m σ = {0.5, 1, 2, 4}
16 / 16× 4 9 / 1

Nb = 9

GLCMh/m

θ = {0, 45, 90, 135} (averaged)
5 / 5× 4 9× 9 / 1d = {1, 2, 3, 4, 5}

Nb = 9

GLRLMh/m

θ = {0, 45, 90, 135} (averaged)
1 / 5 9× 10 / 1MRL = 10

Nb = 9

INT h/m Nb = 9 1 / 4 9 / 1

TEXTONS
Nc = {10, 20, 30, 40, 50}

5× 4 {30, 60, 90, 120, 150}
TS × TS = {3× 3, 5× 5, 7× 7, 9× 9}
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total feature distribution across all ROIs in the training set is made approximately

uniform. Consequently, densely populated areas in feature space are quantized with

a high resolution while sparse areas are quantized with a low resolution. In INT

and GFB, the summarizing measures are computed from the original CT intensities

and filter responses, respectively. In GLCMs and GLRLMs, the intensities are tra-

ditionally quantized using a fixed bin width, and we therefore use this scheme for

these descriptors. For TEXTONS no quantization of the intensities is performed.

All histograms are normalized to sum to one, and all summarizing measures are

standardized to unit variance.

k in the kNN classifier is optimized using cross-validation, where the following

k’s are considered: k = 1, 3, . . . , ⌊√n⌋ where n is the number of prototypes in the

kNN classifier and the upper limit on k is depicted by the usual square root rule

[11].

Table 1 lists the texture descriptors together with the descriptor specific parame-

ter values that are considered in the experiments. The texture descriptors described

in Sections 2.1, 2.2, 2.3, 2.4, 2.5 and 2.6, which we term INT , LBP , GFB, GLCM ,

GLRLM , and TEXTONS, respectively, are applied. Where applicable, full his-

tograms as well as summarizing measures are used, indicated by h and m. LBPs

and textons are applied only as histograms. In GLCM and GLRLM , both the full

matrices and the summarizing measures are averaged across the four orientations

θ = {0, 45, 90, 135} as is often done in the literature. However, we do not aver-

age across distances in GLCM . In LBP , we consider LBP2ri and LBP2riu2 with

different pairs of parameters (R,P ).

The performance is estimated using leave-one-out error estimation at subject

level. In each of the 25 leave-out trials, all ROIs from the test subject are held out

and the classification system using the different texture descriptors is trained on

the remaining data. The remaining subjects are separated into a training set and a

validation set. In this separation, balanced class distributions are ensured by placing

half the subjects from each class in the training set and the rest in the validation

set. k in the kNN classifier is optimized using cross-validation with the ROIs in the

training set as prototypes, and the classification accuracy on the validation set is

used as performance criterion. SFS is applied within this cross-validation procedure

to find an optimal subset in the texture descriptor, either a set of histograms or of

summarizing measures, for each value of k considered. Subsequently, the ROIs in

the test set are classified with the training set ROIs as prototypes using the optimal

k, and the optimal histogram or measure subset obtained using SFS. Note, that

INT h and GLRLMh only consist of one histogram, and SFS is not applied in these
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Table 2: Results of the leave-one-out error estimation at subject level. CA: classification
accuracy. The left part shows the results of using full histograms, and the right part
shows the results of using summarizing measures.

Descriptor CA
LBP 92.9

GFBh 95.2
GLCMh 92.3

GLRLMh 89.9
INT h 91.1

TEXTONS 92.3

Descriptor CA
GFBm 75.6

GLCMm 92.9
GLRLMm 86.9

INTm 78.0

cases.

3.5 Classification Results

The texture descriptors are evaluated by MAP classification accuracy (CA), and the

performance of the different descriptors is reported in Table 2, and the p-values of

comparing the MAP classification outputs of the different descriptors are reported

in Table 3. We also inspect the CA as a function of the size of the training set.

This is done by varying the number of subjects in the training set, and for each

size, do 10 repeated leave-one-subject-out error estimations with a randomly drawn

training set of that particular size. As previous, the classes are balanced in the

data splits, and the same randomly drawn training sets are used for all descriptors.

The whole learning framework is applied in the same way as described previously,

including optimization of k and feature selection on the training set, for each of

the 10 repeated leave-one-out trials. The average curves ± the standard deviation

across the 10 trials are shown in Figure 9.

3.6 Selected Parameters

The number of times a particular k is selected in the leave-one-out estimation is

reported in Table 4 for the different descriptors. Further, the histograms or measures

that are most often selected in SFS in the leave-one-out estimation are reported in

Table 5 for the different descriptors. Note, that this does not reflect which “features”

are in the same subsets in the different leave-out trials, only how often a “feature”

is selected independently. Nothing is reported for INT h and GLRLMh, as these

descriptors only comprise one histogram.
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Table 3: p-values of comparing the MAP classification outputs of the different texture descriptors using McNemar’s test [4].
Significant p-values, i.e., p < 0.05, are highlighted in bold font.

LBP GFBh GLCMhGLRLMh INT h TEXTONSGFBmGLCMmGLRLMmINTm

LBP - - - - - - - - - -

GFBh 0.386 - - - - - - - - -

GLCMh 1.000 0.332 - - - - - - - -

GLRLMh 0.359 0.066 0.502 - - - - - - -

INT h 0.546 0.146 0.773 0.831 - - - - - -

TEXTONS 1.000 0.228 0.773 0.522 0.752 - - - - -

GFBm < 10
−4< 10

−4 < 10
−4 < 10

−4 < 10
−4 < 10

−4 - - - -

GLCMm 0.814 0.423 1.000 0.404 0.646 1.000 < 10
−4 - - -

GLRLMm 0.078 0.006 0.124 0.458 0.265 0.124 0.002 0.044 - -

INTm < 10
−4< 10

−4 < 10
−4

0.002 < 10
−4 < 10

−4 0.596 < 10
−4

0.021 -
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Figure 9: Learning curves for the different texture descriptors. The average ± the stan-
dard deviation of the CA from 10 random trials is reported.

Table 4: Optimized ks in the kNN classifier for the different descriptors in the leave-
one-out experiments at subject level. 100% means that the value was selected in all 25
leave-out trials.

Descriptor Value of k in kNN
LBP 1 (100%)
GFBh 1 (80%) 3 (12%) 5 (8%)
GLCMh 1 (92%) 5 (4%) 7 (4%)
GLRLMh 5 (72%) 1 (28%)
INT h 1 (68%) 3 (20%) 5 (8%) 7 (4%)
TEXTONS 1 (100%)
GFBm 9 (44%) 1 (40%) 3 (12%) 5 (4%)
GLCMm 1 (68%) 3 (24%) 9 (8%)
GLRLMm 1 (72%) 3 (20%) 5 (4%) 9 (4%)
INTm 1 (44%) 5 (24%) 3 (16%) 7 (8%) 9 (8%)
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Table 5: The four most frequently selected histograms or summarizing measures in the SFS procedure for the different
texture descriptors. Individual occurrences are reported, but the histograms / measures are usually part of a larger subset.
100% means that the histogram or measure was selected in all 25 leave-out trials.

Descriptor Features

LBP LBP2ri(·; 1, 8) (64%) LBP2riu2(·; 4, 24) (36%) LBP2ri(·; 2, 8) (28%) LBP2riu2(·; 1, 8) (28%)

GFBh G(·, 0.5) (100%) ||∇G(·, 1)||2 (76%) ||∇G(·, 0.5)||2 (40%) K(·, 0.5) (16%)

GLCMh p(·, ·; 2) (76%) p(·, ·; 4) (12%) p(·, ·; 3) (8%) p(·, ·; 5) (4%)

TEXTONS {TS = 3, Nc = 30} (48%) {TS = 3, Nc = 20} (44%) {TS = 5, Nc = 30} (40%) {TS = 5, Nc = 20} (24%)

GFBm µ(G(·, 0.5)) (68%) µ(G(·, 1)) (44%) µ(G(·, 4)) (44%) skew(G(·, 0.5)) (32%)

GLCMm CORR(·; 1) (52%) UE(·; 1) (44%) CORR(·; 3) (44%) C(·; 1) (28%)

GLRLMm RLN(·) (100%) RP (·) (96%) LRE(·) (80%) GLN(·) (72%)

INTm µ(·) (100%) skew(·) (60%) σ(·) (36%) kurtosis(·) (8%)
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Table 6: Results of classifier combination. CA: classification accuracy.
Descriptor set Combiner CA

histograms
majority voting 94.6

mean 94.6
product 94.6

summarizing measures
majority voting 86.3

mean 87.5
product 86.9

histograms majority voting 95.2
+ mean 95.8

summarizing measures product 95.8

3.7 Combining Information

Several different texture descriptors have been evaluated, giving rise to several dif-

ferent classifiers, one for each descriptor. These different classifiers may capture

different, but complementary, information in the ROIs. This motivates the idea of

using classifier combination [9] for combining the information captured by the differ-

ent descriptors into an overall classification. The outputs of the different classifiers

are combined using a fixed combination rule, or combiner. This classifier combi-

nation scheme, where all the individual classifiers are invoked independently, is the

most commonly used in the literature [9]. Three combiners are considered [9, 12]: the

majority voting rule, the mean rule, and the product rule. In majority voting, MAP

classification (23) is applied prior to voting. The mean and the product rule are

both applied directly on the posteriors. Three setups are considered, one using only

the histogram-based descriptors, i.e., LBP , GFBh, GLCMh, GLRLMh, INT h,

and TEXTONS; one using only the summarizing measure-based descriptors, i.e,

GFBm, GLCMm, GLRLMm, INTm; and one using all descriptors. Table 6 lists

the resulting classification accuracies. Combining descriptors slightly increases per-

formance in two cases, the product rule and the majority voting rule applied to all

descriptors achieves CA = 95.8%, which means that one more sample is correctly

classified than with the best performing individual descriptor, GFBh that achieved

CA = 95.2%. However, these differences are not significant.

We also experimented with an alternative way of combining information from

different descriptors by considering all histograms or measures collectively in the

classification system. In this case, all descriptors are candidates in the feature selec-

tion. Using full histograms achieved CA = 92.9% and using summarizing measures

achieved CA = 86.9%. Further, a combination of GLCMh/m, GLRLMh/m, and

INT h/m was experimented with. This represents a descriptor that is used in sev-
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eral studies in the literature [2, 18, 20, 21, 38, 45]. This resulted in CA = 93.5% and

CA = 87.5%, for histograms and summarizing measures, respectively.

4 Discussion and Conclusion

This chapter reviewed several popular texture descriptors in the literature for tissue

classification in pulmonary CT, with a focus on emphysema classification.

Most of the evaluated descriptors performed well. The considered data set is

small and there were therefore few significant differences between the descriptors

in general and none between that descriptors that performed well. The results

suggest for using full histogram approaches, i.e., LPBh, GFBh, GLCMh, and

TEXTONS performed similar and slightly better than GLRLM and INT while

significantly better than using moments of distributions as was used in GFBm

and INTm. No descriptor stood out as the single best one. The GFB using full

filter response histograms, GFBh, achieved the highest accuracy, CA = 95.2%, see

Table 2, however, this was not significantly different from any of the competing

full histogram descriptors, see Table 3. The data used here is that same as is used

in [34], but the results are slightly different due to differences in the classification

setup. In [34], the ROI size was also optimized on the training data, for example.

However, the GFB using full histograms and LBPs both performed well and were

not significantly different according to the results in this chapter, and this was also

the result in [34].

Two descriptors that are still commonly used, GFBm and INTm, performed

significantly worse than all the remaining descriptors , see Table 2 and Table 3. The

two descriptors were not significantly different from each other, which is explained

by the fact that the four most often selected summarizing measures in GFBm are

based on blurred intensities, see Table 5, i.e., the two descriptors capture similar

information.

Summarizing measures, which are heavily used in the literature, did not work

well for all descriptors. The results of the conducted experiment show that using

moments instead of full histograms for INT and GFB discards important discrim-

inative information for the investigated classification task, as indicated by the sig-

nificant degradation in performance when comparing INT h to INTm and GFBh

to GFBm, see Table 2 and Table 3. For the classical texture descriptors, GLCMs

and GLRLMs, the common approach of using summarizing measures, instead of full

matrices, works well.

The data set used in the experiment is small, and as can be seen from the
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learning curves in Figure 9, all descriptors could benefit from more training data,

i.e., non of the curves converge. Some descriptors perform well already at small

data sizes and these descriptors are: LBP , GLCMh, and GLCMm. However,

descriptors such as GFBh and TEXTONS approach a good performance as the

data size increases, and may prove even better for more data than is available in

this experiment. Allowing many options in the feature selection, such as in GFB

where many filters a considered, also increases the demand on the training data size

in order to avoid overtraining. This may also be reflected in the learning curves.

The descriptors should also be judged based on other criteria than classifica-

tion performance. One criterion is the complexity of the descriptor. Histogram-

based descriptors are generally more rich in information at the expense of increased

complexity, while summarizing measures reduce the dimensionality, and hence the

complexity. The crucial point here is whether important discriminative information

is lost in this process, and this was clearly the case for some descriptors in the

conducted experiments. The complexity of the different descriptors can be seen in

Table 1 where the dimensionality of the individual components of the descriptors,

i.e., number of bins in the individual histograms for the histogram-based descrip-

tors, is listed in the fourth column. In general, LBP is the most complex descriptor

followed by TEXTONS. This should also be judged in the light of how many and

which “features” are selected in SFS, and as can be seen in Table 5, LBP2ri(·; 1, 8)
that has 36× 9 bins is frequently selected.

The data considered in this chapter is two-dimensional, and hence the focus was

on 2-D descriptors. However, since volumetric CT images are becoming state-of-

the-art, it is important to consider whether the descriptors are applicable in 3-D.

INT and GFB can be directly, and have already been [30, 31], extended to 3-D

without any increase in complexity. Note, however, that more samples are available

for estimating histograms and that the number of histogram bins therefore can be

increased. GLCMs and GLRLMs have also already been extended and applied in

3-D [45]. In this case, the number of orientations, and thereby matrices, increases.

However, when averaging across orientations the complexity stays the same. As

for GFB and INT, the intensity can be quantized into more bins due to more

available samples for histogram estimation. It is not straightforward how to extend

LBPs to 3-D. Two approximate extensions of LBP to 3-D are presented in [46],

with the specific application being temporal texture data in computer vision. The

first approach forms a helical path in the temporal direction. This idea could be

applied in volumetric CT by, e.g., forming helical paths in various directions and

combining the resulting LBPs. The second approach in [46] computes 2-D LBPs in
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three orthogonal planes and concatenates these. Other studies consider samples on

a sphere centered on the voxel of interest [14, 19]. In these cases there is no natural

ordering of the samples as is the case when considering a circle. The complexity

increases in all approaches. The texton approach considered in this chapter uses

a raw pixel representation, and increasing the dimensionality to 3-D has the effect

of increasing the feature space where both the clustering and the texton codebook

similarities are computed. This needs not increase the complexity of the descriptor,

i.e., the number of cluster centers, but it puts increasing demand on more training

data in order to reliably estimate cluster centers.

It may seem somewhat surprising that the combination of GLCMm, GLRLMm,

and INTm, often used in the literature [2, 18, 20, 21, 38, 45], performed worse than

GLCMm alone. This is because SFS is a greedy combinatorial search procedure

that can get stuck in local optima, in this case due to elements from the descriptors

INTm or GLRLMm being selected early in the optimization process. Care should

therefore be taken when using a feature selection scheme. The same argument holds

for the results obtained when performing feature selection on the combined set of all

descriptors, which also performed worse than several of the individual descriptors.

Combining the texture descriptors by classifier combination in a parallel scheme us-

ing a fixed combiner, improved results slightly, with CA = 95.8%, when all descrip-

tors, both histograms and summarizing measures were considered in conjunction

with the product or the majority voting rule, see Table 6. However, this was not

significantly better than the best performing individual descriptor, GFBh. We ex-

pect classifier combination to be more beneficial in problems with more complicated

and diverse texture classes than the ones encountered when classifying emphysema

in CT.

In conclusion, several popular texture descriptors in the medical image anal-

ysis literature for texture-based emphysema classification in pulmonary CT were

reviewed and evaluated within the same classification framework. The evaluation

was performed on an emphysema CT ROI classification task. No descriptor was

significantly better than all other descriptors. In general, full histogram representa-

tions performed better than moments of histograms, and intensity and run length

features alone seemed to perform less good than the more complex texture descrip-

tors. There were indications that combining the classification output of several

classifiers, each based on a different texture descriptor, is beneficial. However, the

increase in performance was not significant for the considered classification task.
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