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Abstract. A novel method for classification of abnormality in anatom-
ical tree structures is presented. A tree is classified based on direct com-
parisons with other trees in a dissimilarity-based classification scheme.
The pair-wise dissimilarity measure between two trees is based on a linear
assignment between the branch feature vectors representing those trees.
Hereby, localized information in the branches is collectively used in clas-
sification and variations in feature values across the tree are taken into
account. An approximate anatomical correspondence between matched
branches can be achieved by including anatomical features in the branch
feature vectors. The proposed approach is applied to classify airway trees
in computed tomography images of subjects with and without chronic
obstructive pulmonary disease (COPD). Using the wall area percentage
(WA%), a common measure of airway abnormality in COPD, as well
as anatomical features to characterize each branch, an area under the
receiver operating characteristic curve of 0.912 is achieved. This is sig-
nificantly better than computing the average WA%.

Keywords: dissimilarity representation, linear assignment, tree classi-
fication, tree dissimilarity measure

1 Introduction

We consider the task of classifying abnormality in anatomical tree structures in
medical images. Examples of such structures and applications are: quantifica-
tion of airway tree abnormalities in, e.g., chronic obstructive pulmonary disease
(COPD) [1–3] or asthma [4], quantification of arterial stenosis in the circle of
Willis in the brain [5], and quantification of retinopathy of prematurity in retinal
vessels [6]. The goal is to relate the global state of the anatomical tree to the
disease status based on local information in the branches of the tree. This goal
is often achieved by considering only parts of the tree and computing an average
feature across the branches in those parts [1–6].

Abnormalities may be localized in different parts of the tree, and the under-
lying normal structure of the branches often varies across the tree. The value



range of the feature used to capture the local information will therefore often be
different for different parts of the tree, and the discriminative ability of a feature
averaged across several branches may be limited. There may also be a functional
difference between a tree containing one severely abnormal branch compared to
a tree with several mildly abnormal branches, which can, however, give rise to
the same average feature value.

In this paper, we propose to learn from data the relationship between the
collective set of branches representing a tree and the global state of that tree.
An anatomical tree is considered as a set of branches each characterized by one
or more features, and a global label, the disease status of the subject, is associ-
ated with the entire tree. Classification is based on direct comparisons between
trees, or sets of branch feature vectors, using a dissimilarity-based classification
scheme [7]. The feature values extracted in individual branches are hereby col-
lectively taken into account and related to the global state of the tree. A glob-
ally optimal one-to-one matching, according to a linear assignment [8], of the
branches in two trees is used as anatomical tree dissimilarity measure on which
the classification is based. More information is used compared to using an aver-
age feature since individual branches are compared, taking localized information
into account which is combined into an overall tree dissimilarity measure.

Dissimilarity-based classification has previously proven useful in medical imag-
ing, e.g., for detection of tuberculosis in chest radiographs [9] and for classifi-
cation of emphysematous tissue in computed tomography (CT) [10]. A similar
approach to the one proposed in this paper has previously been successfully ap-
plied to classify subjects using texture information in patches of lung tissue from
CT images [11]. In the current paper, we consider tree structures. We experiment
with different levels of “rigidness” by matching the branches solely based on an
abnormality feature and by matching the branches using both abnormality and
anatomical features. The latter approach ensures an approximate anatomical
correspondence between matched branches. This is in contrast to tree proxim-
ity measures based on tree matching [12, 13], which are more computationally
demanding.

The dissimilarity-based classification scheme is applied to detect COPD in
volumetric pulmonary CT images using automatically segmented airway tree
branches. COPD is a major public health problem that is projected to become
the third leading cause of death worldwide by 2020 [14]. Pulmonary function
tests (PFTs), which are the current gold standard for diagnosing and monitoring
COPD [14], are insensitive to early stages of the disease and lack reproducibility,
and there is therefore a general interest in finding good image-based markers for
COPD. In this paper, the focus is on airway disease, one of the main components
of COPD, that is mainly characterized by a narrowing of the smaller airways
leading to limitations of the airflow to and from the alveoli. This narrowing is
caused by inflammation and fibrosis, resulting in thicker airway walls, as well as
mucus, blocking the passage of air in the lumen.

The proposed approach is evaluated and compared to computing the average
wall area percentage (WA%) across the branches in the tree. This is a commonly



used CT-based marker of airway disease in the clinical literature that, despite
its simplicity, have shown a significant correlation with PFTs [1–3].

2 Classification in Tree Dissimilarity Space

An anatomical tree X = {xi}m can be represented by a set of m branch feature
vectors xi, each feature describing the branch shape or appearance and/or the
anatomical position of a branch. A label Y is associated with the entire tree.
The task is to classify an unseen tree X based on a labeled training set of n

trees {(Xi, Yi)}n. Probabilistic classification outputs are considered as these can
be directly interpreted as a probability of disease.

2.1 Dissimilarity Representation

A dissimilarity representation is used to classify the trees [7]. From the matrix
of pair-wise tree dissimilarities D = [d(Xi, Xj)]n×n computed from the training
set T = {Xi}n, there are different ways to derive a feature vector space where
traditional vector space methods can be applied. In this work, we consider tree
dissimilarity measures d(·, ·) that do not produce positive definite matrices, and
the dissimilarity space approach, which does not require fulfillment of this condi-
tion, is therefore used [7]. An anatomical tree dissimilarity space is constructed
of dimension equal to the size of the training set. Each feature vector describ-
ing a tree X consists of the dissimilarities d(X,Xi) to each of the trees in the
training set, i.e., D(X,T ) = [d(X,X1), d(X,X2), . . . , d(X,Xn)].

2.2 Dissimilarity Measure

The anatomical tree dissimilarity measure d(·, ·) is the crucial component in this
construction, and it is in this part of the proposed approach that a set of branch
feature vectors are collectively considered as representing a tree. The dissimilar-
ity measure based on a linear assignment between sets of sub-objects proposed
in [11] is used for this purpose. The dissimilarity between two anatomical trees,
or sets of branches, X1 = {x1i}m and X2 = {x2j}n where x1i is the ith branch
feature vector in X1, is expressed as the minimum linear sum assignment be-
tween the two sets where the cost of assigning x1i to x2j is the dissimilarity
between those two branch feature vectors according to a branch dissimilarity
measure ∆(x1i,x2j). This can be seen as assigning all the branches in the small-
est tree to the branches in the other tree in a way such that the two trees are
as similar as possible while only allowing one-to-one matchings. The linear as-
signment problem can be formulated in terms of a bipartite graph. However, it
is important to note that this construction is only used in order to compute the
linear assignment between the sets of branches and that no structure is imposed
on the trees.

Let G = (X1∪X2, E) be a weighted undirected bipartite graph with node sets
X1 and X2 where |X1| = |X2| = n, edge set E = {{x1i,x2j} : i, j = 1, . . . , n},



and with a weight ∆(x1i,x2j) associated with each edge {x1i,x2j} ∈ E. A subset
M of E is called a perfect matching, or assignment, if every node of G is incident
with exactly one edge in M . The perfect matching with minimum weight M∗ is
given by

M∗ = argmin
M

∑

{x1i,x2j}∈M

∆(x1i,x2j) : M is a perfect matching. (1)

This problem can be solved efficiently using the Hungarian algorithm [8]. The
resulting anatomical tree dissimilarity measure is thus

dla(X1, X2) =
∑

{x1i,x2j}∈M∗

∆(x1i,x2j) (2)

where M∗ is obtained via (1).
Segmented anatomical trees are likely to contain differing number of branches,

i.e., |X1| 6= |X2|, and the above formulation does not account for this. However,
a problem with different number of branches in the two trees can be turned
into a problem with the same number of branches by adding “dummy nodes” to
the graph [8]. The resulting problem is now in the form of (1) and can again
be solved using the Hungarian algorithm. Differences in tree sizes, in terms of
number of branches, are accounted for by dividing by the number of branches in
the smallest tree, in order not to favor smaller trees

dlan(X1, X2) =
dla(X1, X2)

min(|X1|, |X2|)
. (3)

A branch dissimilarity measure ∆(·, ·) is needed in order to compute the
anatomical tree dissimilarity measure dlan(·, ·). In this work, branches are rep-
resented by a d-dimensional feature vector xi = [xi1, . . . , xid]

T , and the branch
dissimilarity is computed as the Euclidean distance in the branch feature space
∆(xi,xj) = ||xi − xj ||2.

2.3 Classification

Trees are classified by mapping into the anatomical tree dissimilarity space using
D(·, T ) followed by classification using the k nearest neighbor (kNN) classifier
posterior probability estimate with the training set trees as prototypes

p(Y |D(X,T )) =
kY (D(X,T ))

k
(4)

where kY (D(X,T )) is the number of nearest neighbors of X , in the dissimilarity
space, belonging to class Y out of a total of k nearest neighbors. The Euclidean
distance between the feature vector representation of the trees of X and Xi in
the dissimilarity space, ||D(X,T )−D(Xi, T )||2, is used as distance in the kNN
classifier. k is fixed according to k =

√
n where n is the number of prototypes in

the kNN classifier [15].



3 Extraction of Airway Tree Branch Feature Vectors

In order to extract the branch feature vectors representing each airway tree, the
whole airway tree is segmented in the CT image into lumen and outer wall using
the algorithm described in [16]. Figure 1(a) shows an example of a segmented
airway tree using this algorithm. The segmentation is subdivided into branches
and branch centerlines are extracted using the algorithm described in [17]. Fig-
ure 1(b) shows a coloring of the identified branches using this algorithm. Branch
generations are obtained by assigning generation 0 to the trachea and increment-
ing generation number by one when propagating the generation number from a
parent centerline to its child centerlines. All the steps taken are fully automatic,
and the reader is referred to [16, 17] for further details.

(a) (b)

Fig. 1. (a) Airway segmentation with the inner airway wall shown in green and the
outer airway wall shown in transparent blue. (b) Branches found in the airway seg-
mentation shown in (a) overlayed with anatomical features.

Each branch is represented by a 5-dimensional feature vector xi comprising
one measure known to be related to COPD as well as four anatomical features
roughly capturing the location and orientation of the branch in the airway tree.
The features are the following:

COPD feature

– wall area percentage (WA%). The number of voxels in the branch wall rela-
tive to the total amount of voxels in a branch, i.e., the number of voxels in
both the wall and the lumen. WA% is computed from the segmented airway
tree (lumen and outer wall). This is the most commonly used measure of



airway disease in CT [1–3, 18]. It is also used in asthma [4]. WA% is com-
puted from cross-sectional slices in the mentioned references whereas it is
computed from volumetric segmentations of the branches in this paper. The
reader is referred to [16] for details.

Anatomical features The anatomical features are computed from the center-
line representation of the tree.

– distance to the trachea (DT). The distance from the root of the branch to
the carina along the centerlines connecting that branch to the trachea. DT
is scaled w.r.t. the subject size by dividing by the height of the subject. This
feature can be seen as a continuous version of the branch generation, and is
less affected by errors in the segmentation and branch detection.

– orientation w.r.t. the trachea (OT). The orientation of the branch in a global
coordinate system based on the trachea, carina, and main bronchi. This is
expressed as a three-dimensional vector.

The global coordinate system as well as the anatomical features for a specific
branch are illustrated in Fig. 1(b). Each branch feature is standardized to zero
mean and unit variance.

4 Experiments

4.1 Data

The data consists of 296 low-dose volumetric CT images from 296 participants
of the Danish Lung Cancer Screening Trial [19] with the following scan parame-
ters: tube voltage 120 kV, exposure 40 mAs, slice thickness 1 mm, and in-plane
resolution ranging from 0.72 to 0.78 mm. 144 images are from subjects without
COPD and 152 images are from subjects diagnosed with mild to very severe
COPD according to spirometry [14].

4.2 Evaluation

The proposed anatomical tree classification approach is evaluated using leave-
one-out estimation on the CT data, and the area under the receiver operating
characteristic (ROC) curve (AUC) is computed on the soft outputs of the clas-
sifier of Eqn. (4). The anatomical tree dissimilarity space considered in each
leave-out trial is of dimension equal to the size of the training set, i.e., 295-
dimensional. The proposed approach is compared to average WA%, and the
analysis is performed for different individual generations in the airway tree in
the range 3 to 7 and for several ranges from 3-4 to 3-7. Similar generations were
considered in [1, 2, 20].

Different feature representations of the branches are considered, i.e., using
WA% only as well as using WA% jointly with anatomical features in order to
enforce an approximate anatomical correspondence in the matching.



4.3 Results

The results are reported in Table 1. The best overall performing measure is based
on matching branches in generations 3 to 7 using WA% as well as anatom-
ical features. This is significantly better than using the average WA% in all
considered generation ranges (p < 10−4) according to DeLong, DeLong, and
Clarke-Pearson’s test [21]. It is also significantly better than matching branches
in generations 3 to 7 using WA% without implicit correspondence by anatomical
features (p = 0.001), but not significantly better than using anatomical features
only (p = 0.613). ROC-curves for the underlined AUCs in Table 1 are shown in
Fig. 2(a).

Table 1. AUCs for COPD diagnosis for the proposed approach (top part) and for
average WA% (bottom part). The best performing measure in each column is marked
in bold-face, the best performing measure for each approach both for using an individual
generation and a range of generations is underlined, and the overall best performing
measure is marked in italics.

approach generation generations range

3 4 5 6 7 3-4 3-5 3-6 3-7

dlan

WA% 0.792 0.856 0.813 0.883 0.884 0.840 0.865 0.878 0.892

WA%+DT+OT 0.828 0.867 0.864 0.897 0.880 0.868 0.881 0.904 0.912

DT+OT 0.678 0.659 0.739 0.891 0.871 0.706 0.857 0.893 0.908

average feature

WA% 0.811 0.858 0.838 0.762 0.704 0.849 0.845 0.818 0.788

The effect on the matching in Eqn.(1) of including anatomical branch fea-
tures, in terms of how often a branch from one generation is matched to other
generations, is inspected in Table 2. More branches from the same generations
are matched when including anatomical features compared to using WA% only,
i.e., a larger percentage of the matches is concentrated in the diagonal of the
matrix for WA%+DT+OT.

5 Discussion

Average WA% performed best at generation 4. Considering more generations,
in isolation or as a range, deteriorated the performance, see Table 1. WA% on
average grows as a function of generation, as seen in Fig. 2(b). This is due
to anatomy, but also likely due to the resolution limit of the CT image being
reached leading to size overestimation because of partial volume effects. This



Table 2. Distribution of how often branches of different generations in the range 3 to 7
are matched in the whole data set when considering WA% and when considering WA%
together with anatomy, respectively. The percentages of a total of 43660 matches are
reported, and the total number of branches in generations 3 - 7 are as follows: 2467,
4927, 8633, 10004, 7366. Note that these matrices are symmetric.

WA% WA%+DT+OT

3 4 5 6 7 3 4 5 6 7

3 1.6 5.1

4 1.8 3.1 1.8 6.6

5 1.7 3.9 6.9 0.8 4.4 10.2

6 1.3 3.5 7.8 10.0 0.3 2.1 7.8 11.7

7 0.9 2.5 5.7 7.4 5.4 0.1 0.8 3.6 7.5 8.1
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Fig. 2. (a) ROC-curves using the best performing generation and generations range
for each approach corresponding to the underlined AUCs in Table 1. (b) WA% as a
function of generation for the two groups. Solid line is the mean and dashed lines are
the mean ± the standard deviation.



Table 3. AUCs for COPD diagnosis on the pruned trees for the proposed approach
(top part) and for using an average COPD feature (bottom part). The best perform-
ing measure in each column is marked in bold-face, the best performing measure for
each approach both for using an individual generation and a range of generations is
underlined, and the overall best performing measure is marked in italics. Results are
not reported for generation 6 and 7 since some pruned trees did not contain branches
in these generations.

approach generation generations range

3 4 5 6 7 3-4 3-5 3-6 3-7

dlan

WA% 0.792 0.856 0.813 − − 0.840 0.848 0.861 0.859

WA%+DT+OT 0.828 0.867 0.864 − − 0.868 0.885 0.886 0.887

DT+OT 0.678 0.659 0.739 − − 0.705 0.759 0.750 0.747

average feature

WA% 0.811 0.858 0.814 − − 0.849 0.861 0.862 0.862

variation in feature value across the tree may explain why average WA% dete-
riorates for larger generations, i.e., the discriminative information is lost. The
proposed approach naturally deals with this phenomenon by matching individual
branches and can therefore incorporate branches from larger generations while
preserving discriminative information. This may explain the significantly better
performance.

The segmentation algorithm generally finds more branches in airway trees
from the no COPD group compared to the COPD group in the data set. This
skew in the number of branches may bias the results since partial matchings are
allowed in Eqn. (3). This could explain why using anatomical branch features
alone performs well, see Table 1. We inspect this phenomenon by pruning the
smallest branches in all the trees in the data set to the size of the smallest
tree. The leave-one-out estimation is then repeated for the pruned trees, and
the results are shown in Table 3. As seen, it is still possible to achieve high
AUCs, and the proposed approach achieves the best AUC of 0.887 which is still
significantly better than average WA% for all the considered generation ranges
(p < 10−4). Moreover, the performance of using only anatomical features has
become significantly worse than average WA% in all cases (p < 10−4).

The computational complexity of the proposed anatomical tree dissimilarity
measure dlan(X1, X2) is bounded by the complexity of the algorithm used to
compute the linear assignment. Using the Hungarian algorithm this is O(m4) [8]
where m is the number of branches in the larger tree, i.e., m = max(|X1|, |X2|).
This is in contrast to NP-complete tree proximity measures that take the tree
topology into account, such as [12, 13]. A test tree X is classified by mapping
into the anatomical tree dissimilarity space which has complexity O(nm4) where
n is the size of the training set, i.e., n = |T | and m in this case is the number of



branches in the largest three among all training set trees as well as the test tree,
i.e., m = max(|X |, |X1|, |X2|, . . . , |Xn|), Xi ∈ T . This is followed by classification
in the dissimilarity space using a trained classifier.

The relative contribution of airway disease and emphysema, the other main
component of COPD, to COPD varies [1] and may in fact be independent [22].
It would therefore be interesting to combine the current approach with measures
of emphysema.

6 Conclusions

We propose a novel method for classification of abnormality in anatomical tree
structures that is based on dissimilarities computed directly between anatomi-
cal trees as represented by sets of branch feature vectors. This is an alternative
to a common approach in the clinical literature of averaging one branch fea-
ture or measuring a small number of specific locations. A kNN classifier in the
dissimilarity space obtained using a tree dissimilarity measure based on a lin-
ear assignment between the branches in the trees using WA% together with
anatomical features, achieved an AUC of 0.912 on a COPD classification task in
volumetric pulmonary CT. This was significantly better than the AUC of using
the average WA%.
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