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Abstract. In this paper, we propose to solve multiple instance learning
problems using a dissimilarity representation of the objects. Once the
dissimilarity space has been constructed, the problem is turned into a
standard supervised learning problem that can be solved with a general
purpose supervised classifier. This approach is less restrictive than kernel-
based approaches and therefore allows for the usage of a wider range of
proximity measures. Two conceptually different types of dissimilarity
measures are considered: one based on point set distance measures and
one based on the earth movers distance between distributions of within-
and between set point distances, thereby taking relations within and
between sets into account. Experiments on five publicly available data
sets show competitive performance in terms of classification accuracy
compared to previously published results.
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1 Introduction

In multiple instance learning (MIL), complex objects are represented by sets of
“sub-objects” where only the sets have an associated label, not the sub-objects.
Following MIL terminology, the sets are termed bags and the sub-objects are
termed instances. This kind of problem might, e.g., arise in medical image clas-
sification where a subject is known to suffer from a certain disease, but it is
not clear exactly which regions in the associated medical image that contain the
corresponding pathology. In this case, local image patches are the instances, the
whole image is the bag, and the label of the bag is either ill or healthy.

The traditional approach to solving MIL problems involves explicit learning
of a decision boundary in instance space that separates the instances capturing
the concept from the remaining instances [1, 2]. A bag is then classified based
on whether it contains an instance falling in this area. An alternative instance
space approach involves labeling all instances with the same label as the bag
they belong to. The problem is then treated as a standard supervised learning
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problem where all instances are classified in instance space, ultimately disregard-
ing the multiple instance aspect of the original problem, and a bag is classified
by combining the individual instance classifications in that bag [3].

The above mentioned approaches treat instances in the same bag indepen-
dently in the learning step thereby disregarding potentially useful information.
In some MIL problems, instances from the same bag collectively constitute that
bag and should as such all contribute to the classification of that bag. Several
authors have looked into using this information by applying learning at bag level
with kernel-based methods. To name a few: Andrews et al. reformulated a sup-
port vector machine (SVM) optimization problem to operate directly on MIL
problems at bag level [4]. Gärtner et al., Tao et al., and Zhou et al. designed
specialized kernels for MIL problems and used standard SVMs with these kernels
[5–7]. Chen et al. represented bags in an n-dimensional space where each dimen-
sion was the similarity between one of the n instances in the training set and
the closest instance in a bag. Then a 1-norm SVM was used to simultaneously
select the relevant features, or instances, and train a bag classifier [8].

In this paper, we propose to use the dissimilarity representation approach
to learning [9] for solving MIL problems at the bag level. Once the bag dis-
similarity space has been constructed, the problem is turned into a standard
supervised learning problem that can be solved with a general purpose super-
vised classifier. This is a proximity-based approach as are kernel-based methods,
however, the dissimilarity representation approach does not require Mercer ker-
nels as do kernel-based methods. A broader range of proximity measures, such as
well known measures in pattern recognition like the Hausdorff distance and the
single linkage distance, can therefore be used for solving MIL problems with this
approach. We further propose, not only to consider all instances collectively in
bag classification, but also to consider the relations among the instances within
and between bags. This is similar in spirit to [7] where graphs capturing in-
stance relations were constructed and used in a SVM with a graph kernel [5]. A
novel non-Mercer bag dissimilarity measure that is based on the earth movers
distance (EMD) between instance distance distributions is proposed for this
purpose. Compared to the graph kernel approach used in [7], the proposed bag
dissimilarity measure is less rigid since distributions of instance distances are
considered instead.

Dissimilarity-based learning has previously been applied in MIL. Wang and
Zucker applied the k nearest neighbor (kNN) classifier to MIL problems by
using the Hausdorff distance between the instances in two bags as the distance
between these bags [10]. They showed that this was not sufficient to get good
performance on the classical MIL data sets MUSK1 and MUSK2 [1], due to
noise in the presence of negative instances in the positive bags, and suggested
two adaptations of kNN instead. A key observation is that kNN using Hausdorff
distance between instances is working on dissimilarities between bags, and one
way of arriving at a more global and robust decision rule when dissimilarities
between objects are available is via a dissimilarity representation [9]. Building
a global classifier like the Fisher linear discriminant classifier (Fisher) on such a
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representation leads to a global decision rule that uses a weighted combination of
the dissimilarities to all training set objects in classification. This means better
utilization of the available training data, with possibly increased accuracy and
less sensitivity to noise.

The rest of the paper is organized as follows: Sections 2 and 3 briefly de-
scribe the MIL problem and the dissimilarity representation approach to learn-
ing. Section 4 presents two conceptually different types of dissimilarity measures
between bags of instances. The first type is points set distance measures and
the second type is based on EMD between distributions of instance distances
within- and between bags. The proposed approach is evaluated by training and
testing traditional supervised classifiers on dissimilarity representations of five
publicly available MIL data sets. This is reported in Section 5. Finally, Section
6 provides a discussion and conclusions.

2 Multiple instance learning in short

In MIL [1], an object xi is represented by a set, or bag, Bi = {xij}ni
of ni

instances xij , and a label Yi = {+1,−1} is associated with the entire bag. There
are no labels yij associated directly with the instances, only indirectly via the
label of the bag. This is different from standard supervised learning where objects
are represented by a single instance, i.e., Bi = xi and all instances therefore
are directly labeled. The bag labels are interpreted in the following way in the
original MIL formulation [1]: if Yi = −1, then ∀xij ∈ Bi : yij = −1. If Yi = +1,
then ∃xij ∈ Bi : yij = +1. In other words, if a bag is labeled as positive, then at
least one instance in that bag is a positive example of the underlying concept.
This formulation can be relaxed to cope with a large and noisy set of instances by
requiring that a positive bag contains a number or fraction of positive instances
instead. In this work, we only consider two-class problems, but MIL can also be
generalized to multi-class problems.

3 Dissimilarity representations in short

Objects x are traditionally represented by feature vectors in a feature vector
space, and classifiers are built in this space. Alternatively, one can represent
the objects by their pair-wise dissimilarities d(xi, xj) and build classifiers on the
obtained dissimilarity representation [9]. From the matrix of pair-wise object
dissimilarities D = [d(xi, xj)]n×n computed from a set of objects {x1, . . . , xn},
there are different ways of arriving at a feature vector space where traditional
vector space methods can be applied. In this work, we consider the dissimilarity
space approach [9].

Given a training set T = {x1, . . . , xn}, a subset R = {p1, . . . , pk} ⊆ T called
the representation set containing prototype objects pi is selected. An object x is
represented with respect to R by the vector D(x,R) = [d(x, p1), . . . , d(x, pk)] of
dissimilarities computed between x and the prototypes in R. This k-dimensional
vector space based on R is called a dissimilarity space, and it is in this space
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that we propose to solve MIL problems at the bag level. In this work, we apply
learning in the full dissimilarity space, i.e., R = T .

4 Bag dissimilarity space

The idea we propose is to map the bags into a dissimilarity space D(·, R =
{Bi}k). Here the bags are represented as single objects, positioned with respect
to their dissimilarities to the prototype bags in R. In this space, the MIL problem
can be considered as a standard supervised classification problem where each
object xi = Bi has label Yi and general purpose supervised classifiers can be
directly applied. The separation of the bags in the obtained dissimilarity space
is very much dependent on the choice of bag dissimilarity measure d(Bi, Bj).
In the following, we present two conceptually different types of dissimilarity
measures for bags of instances.

4.1 Point set distance measures

The instances x reside in a common space and bags B can therefore be thought
of as sets of objects in this space. In the case of vectorial instances, these objects
are points in a vector space. This leads to the idea of computing dissimilarities
between bags using point set distance measures. In this work, we experiment
with the minimum distance

dmin(Bi, Bj) = min
p,q

||xip − xjq ||2 (1)

and the Hausdorff distance

dH(Bi, Bj) = max{ddir(Bi, Bj), ddir(Bj , Bi)} (2)

which is based on the directed distance ddir(Bi, Bj) = maxp minq ||xip − xjq||2.
These point set distance measures were also used in a modified kNN classifier in
[10].

Both point set distance measures (1) and (2) use the distance between two
single instances in the end. These measures may therefore be sensitive to noisy
instances, and they are in general insensitive to the number of positive instances
in a positive bag. This may not be desirable when constructing a bag dissimilarity
representation, and taking more information about the instances in a bag into
account in the bag dissimilarity measure may lead to a better representation of
the bags.

4.2 Measures based on between- and within bag instance distances

Zhou et al. conjectured that instances in a bag are rarely independently and
identically distributed and that relations among the instances may convey im-
portant information when applying learning at bag level [7]. In a similar spirit,
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we propose two bag dissimilarity measures that take relations among instances
into account, or more precisely, the distribution of instance distances within a
bag and between bags. It is assumed that the instances in the two bag classes
follow distributions in the common instance space that are very similar, with the
slight difference that one distribution contains additional modes capturing the
concept(s). This situation is illustrated, for one additional mode, to the left in
Figure 1. This could, e.g., be the situation in a MIL problem in medical image

Fig. 1. Left: Illustration of two similar bag class distributions where one of the dis-
tributions, typically the positive bag distribution, has an extra mode corresponding to
the positive instances. Right: Distributions of instance distances, from top to bottom:
within bag instance distances in a bag from the class with no additional mode, typically
the negative class; within bag instance distances in a bag from the class with an addi-
tional mode, typically the positive class. Notice the extra “bump” in the distribution;
instance distances between two bags, one from each class.

classification where the positive medical images contain lesions surrounded by
healthy tissue whereas the negative images only contain healthy tissue. The ad-
ditional mode in one of the bag class distributions gives rise to an extra “bump”
in the distribution of instance distances within bags from that class, compared
to bags from the other class, as illustrated to the right in Figure 1. Further, the
bump can also be seen in the histogram of instance distances computed between
bags from the two classes.

We propose to use the within bag instance distance histograms HBi
and

HBj
, computed from bag Bi and Bj , respectively, and the between bag instance

distance histogram HBi,Bj
, computed between bag Bi and Bj . The bag dis-

similarity measure is then computed as the pair-wise histogram dissimilarity
di,ij = d(HBi

, HBi,Bj
). di,ij can be seen as the directed dissimilarity from Bi to

Bj . The maximum and the mean of the directed dissimilarities from each of the
two bags are proposed as two symmetric dissimilarity measures for bags

dBWmax(Bi, Bj) = max{di,ij , dj,ij} (3)

and

dBWmean(Bi, Bj) =
1

2
(di,ij + dj,ij). (4)
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The histogram dissimilarities are computed using EMD [11] between the nor-
malized empirical distributions. For one-dimensional histogramsH = [h1, . . . , hn]

T

and K = [k1, . . . , kn]
T of equal number of bins n and equal mass, EMD can

be computed as the L1-norm between the cumulative histograms of H and K:
dEMD(H,K) =

∑n

i=1
|
∑

j≤i hj −
∑

j≤i kj |.

4.3 A second dissimilarity space

Initial experiments showed that linear classifiers performed poorly when built
on the obtained bag dissimilarity representations whereas the nearest neighbor
classifier (1NN) performed quite well. This indicates that the bags are separated
in the obtained dissimilarity representations, but that the decision boundaries
between the positive bags and the negative bags are complicated and non-linear,
and/or that the class distributions are multi-modal in these new representations.
An extra preprocessing step is therefore done before applying linear classifiers.
FromD(·, X) computed on the full data setX , a new dissimilarity representation
D2 is constructed such that D2(xi, xj) = ||D(xi, X)−D(xj , X)||2, ∀xi,xj

∈ X .
The linear classifiers are built on this representation. This is a transductive
learning approach since all objects are used to construct the representation D2.
It is, however, important to note that the labels of the objects are not considered
in this construction. Tao et al. also used transductive learning to solve MIL
problems [6].

5 Experiments and results

The proposed approach is evaluated on the two standard data sets in MIL,
namely MUSK1 and MUSK2 originally used in [1], and on three recently pub-
lished image retrieval data sets [4].

5.1 MUSK1 and MUSK2

These are the standard MIL data sets, and they consist of descriptions of aro-
matic molecules that have been labeled according to whether they smell “musky”
or not. A bag represents a molecule, and the instances in a bag are low en-
ergy shapes of the molecule described by 166-dimensional feature vectors. The
MUSK1 data set comprises 47 positive bags and 45 negative bags, and each bag
is represented by 2 to 40 instances. The MUSK2 data set comprises 39 positive
bags and 63 negative bags, and each bag is represented by 1 to 1044 instances.
The data was obtained from the UCI Machine Learning Repository [12], and we
refer to this source as well as to [1] for further information about the data.

5.2 Image retrieval

This data comprises three data sets that are subsets of the Corel data set. Each
data set consists of 100 positive bags, or example images; elephant, fox, or tiger,
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and 100 negative bags, or background images, which are randomly drawn from
a pool of photos of other animals. Each image is represented by 2-13 instances
(apart from a single image in the tiger data set that is represented by a single in-
stance), which are 230-dimensional feature vectors describing the color, texture
and shape in subsegments of the image. The data was obtained from the home-
page4 associated with [4] and we refer to these sources for further information
about the data.

5.3 Evaluation

Classifier Bag dissimilarity measure MUSK1 MUSK2

1NN (on D)

dmin (1) 90.2 / 91.3 86.9 / 84.6
dH (2) 88.0 / 87.9 86.1 / 82.5

dBWmax (3) 85.8 / 86.9 82.8 / 77.7
dBWmean (4) 89.1 / 91.2 85.3 / 80.7

SVM (on D2)

dmin (1) 90.0 / 90.1 92.2 / 87.5
dH (2) 88.0 / 88.0 91.2 / 85.5

dBWmax (3) 89.1 / 89.0 82.2 / 88.3
dBWmean (4) 91.2 / 89.0 85.3 / 85.0

Fisher (on D2)

dmin (1) 90.1 / 90.1 93.5 / 92.7

dH (2) 88.0 / 86.9 90.3 / 88.2
dBWmax (3) 90.1 / 87.9 87.7 / 87.4
dBWmean (4) 91.2 / 91.2 89.8 / 90.3

citation-kNN [10] 92.4 / - 86.3 / -
iterated discrim APR [1] - / 92.4 - / 89.2
diverse density [2] - / 88.9 - / 82.5
mi-SVM [4] - / 87.4 - / 83.6
MI-SVM [4] - / 77.9 - / 84.3
SVM polynomial minimax kernel [5] 92.4 / - 86.3 / -
SVM MI kernel [5] 87.0 / - 92.2 / -
MILES [8] 86.3 / 87.0 87.7 / 93.1

k∧ emph transduction [6] - / 91.2 - / 90.3
k∧/∨ emph transduction [6] - / 90.2 - / 92.2
MIGraph [7] - / 90.0 - / 90.0
miGraph [7] - / 88.9 - / 90.3

Table 1. Classification accuracy on the MUSK1 and MUSK2 data set, reported as
leave-one-out / ten-fold cross-validation. Accuracies reported in the literature are
shown in the bottom part of the table. Cases in the literature where the classification
accuracy is not reported using leave-one-out or ten-fold cross-validation are marked
with “-”. The highest accuracy among the dissimilarity representation-based classifiers
as well as the highest accuracy in general is marked in boldface in each column.

4 http://www.cs.columbia.edu/˜andrews/mil/datasets.html
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The proposed dissimilarity representations are evaluated by training and
testing three supervised classifiers on the bags in the given dissimilarity space.
These classifiers are: 1NN; SVM with a linear kernel K(xi,xj) = xT

i xj where
xi = D2(Bi, X) and trade-off parameter C = 1; and Fisher. For 1NN and Fisher
we use the pattern recognition toolbox PRTools [13], and for SVM we use LIB-
SVM [14].

Classification accuracies are estimated using leave-one-out and 10-fold cross-
validation, since these are commonly used performance measures in the MIL lit-
erature [1, 2, 10, 4, 5, 3, 7]. 10-fold cross-validation is sometimes performed once
and sometimes the average of a repeated number of 10-fold cross-validation pro-
cedures is reported. Here we perform one 10-fold cross-validation. The results
are presented in Table 1 and Table 2 where also previously published results are
reported.

Classifier Bag dissimilarity measure elephant fox tiger

1NN (on D)

dmin (1) 78.0 / 78.0 60.0 / 59.5 77.0 / 74.0
dH (2) 70.0 / 69.5 52.0 / 50.0 67.0 / 64.5

dBWmax (3) 75.0 / 77.5 57.5 / 57.0 68.0 / 66.0
dBWmean (4) 80.0 / 79.0 59.5 / 59.0 70.5 / 71.5

SVM (on D2)

dmin (1) 85.5 / 83.5 67.5 / 65.0 77.5 / 78.0
dH (2) 84.0 / 84.5 37.5 / 49.0 73.5 / 73.5

dBWmax (3) 89.0 / 89.0 64.5 / 56.0 69.5 / 62.0
dBWmean (4) 87.0 / 87.0 62.5 / 58.5 78.0 / 76.5

Fisher (on D2)

dmin (1) 86.0 / 84.5 66.0 / 66.0 78.5 / 78.0
dH (2) 84.5 / 85.0 59.0 / 59.0 73.5 / 72.0

dBWmax (3) 88.5 / 88.5 66.5 / 63.0 81.0 / 78.5
dBWmean (4) 89.0 / 88.5 64.5 / 64.0 81.5 / 79.5

mi-SVM [4] - / 82.2 - / 58.2 - / 78.9
MI-SVM [4] - / 81.4 - / 59.4 - / 84.0
MIGraph [7] - / 85.1 - / 61.2 - / 81.9
miGraph [7] - / 86.8 - / 61.6 - / 86.0

Table 2. Classification accuracy on the image retrieval data. See the caption of Table
1 for further details.

The classification accuracies of 1NN are quite close to the ones previously
reported in the literature. The high 1NN classification accuracies on the MUSK1
and MUSK2 data set indicate that the bags are well separated in the obtained
bag dissimilarity space defined by D. Fisher performs poorly when built on D

with an average classification accuracy of 62.1% whereas SVM performs decent
when built on D with an average classification accuracy of 78.4%. However,
building them on a second dissimilarity representation D2 constructed from D,
as described in Section 4.3, improves performance considerably for Fisher with an
average absolute increase of 19.3% and slightly for SVM with an average absolute



Dissimilarity-Based Multiple Instance Learning 9

increase of 4%. 1NN performs slightly worse when applied to D2 compared to
D, and the numbers reported in Table 1 and Table 2 for 1NN are therefore based
on D. SVM and Fisher generally perform better than 1NN. We also tried kNN
with k optimized using cross-validation on the training set in each fold which
achieved similar performance to 1NN.

Across all five data sets, SVM and Fisher built on dissimilarity representa-
tions show excellent performance. On the MUSK1 and MUSK2 data set, the
classifiers achieve accuracies close to the best reported accuracies in the liter-
ature. On the image retrieval data sets, SVM with a linear kernel, as well as
Fisher, perform better than the SVM’s adapted to MIL problems [4] in two out
of three data sets. This indicates that taking instance relations into account is
beneficial in this kind of problems, as is also seen in [7].

6 Discussions and conclusions

The linear classifiers built on the proposed dissimilarity representations per-
formed better than the best results in the MIL literature in some cases, and
in the remaining cases close to the best published results [1, 2, 10, 4, 5, 8, 6, 7]. It
should be noted that the classifiers were applied “off the shelf” and that, e.g.,
the trade-off parameter C in SVM was not tuned by cross-validation but fixed to
1. Also, the classifiers were trained and tested in dissimilarity spaces of dimen-
sion equal to the number of training samples. This is no problem for SVM. For
Fisher, the pseudo-inverse was used. It may be possible to obtain even better
results than the ones reported in Table 1 and Table 2 by proper regularization
or by reducing the dimensionality of the dissimilarity space, e.g., by prototype
selection [15].

SVM shows worse than random performance on some of the image retrieval
data sets, in particular when built on the dissimilarity representation obtained
using the Hausdorff distance, dH , on the fox data set. This could be caused by
a strong class overlap in the dissimilarity space. This is also indicated by the
fact that both 1NN and Fisher perform worse on this representation compared
to the other representations.

The minimum point set distance, dmin, works well as bag dissimilarity mea-
sure. Similar results were reported in [10]. This is somewhat surprising since
classes are expected to be overlapping in MIL due to positive bags also contain-
ing negative instances. The explanation is that the distribution of the positive
instances is more dense compared to the negative instances in the used data sets,
and therefore a bag containing at least one positive instance is more likely to
be close to another bag containing at least one positive instance than to a bag
containing only negative instances.

To conclude, we have shown that the dissimilarity representation approach
can be used to solve MIL problems. Global decision rules in the form of general
purpose supervised linear classifiers built in a bag dissimilarity space achieves
excellent classification accuracies on publicly available MIL data sets. The ap-
proach is general, and we see this as a promising direction that allows for using a
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wider range of proximity measures between bags in solving MIL problems com-
pared to the popular kernel-based approaches. Further, there are indications
that taking relations among instances into account improves the performance on
certain MIL problems, such as the image retrieval problems.
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