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ABSTRACT

A good problem representation is important for a pattern recognition system to be successful. The traditional
approach to statistical pattern recognition is feature representation. More specifically, objects are represented
by a number of features in a feature vector space, and classifiers are built in this representation. This is also the
general trend in lung parenchyma classification in computed tomography (CT) images, where the features often
are measures on feature histograms. Instead, we propose to build normal density based classifiers in dissimilarity
representations for lung parenchyma classification. This allows for the classifiers to work on dissimilarities be-
tween objects, which might be a more natural way of representing lung parenchyma. In this context, dissimilarity
is defined between CT regions of interest (ROI)s. ROIs are represented by their CT attenuation histogram and
ROT dissimilarity is defined as a histogram dissimilarity measure between the attenuation histograms. In this
setting, the full histograms are utilized according to the chosen histogram dissimilarity measure.

We apply this idea to classification of different emphysema patterns as well as normal, healthy tissue. Two
dissimilarity representation approaches as well as different histogram dissimilarity measures are considered.
The approaches are evaluated on a set of 168 CT ROIs using normal density based classifiers all showing
good performance. Compared to using histogram dissimilarity directly as distance in a k nearest neighbor
classifier, which achieves a classification accuracy of 92.9%, the best dissimilarity representation based classifier
is significantly better with a classification accuracy of 97.0% (p = 0.046).
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1. INTRODUCTION

The traditional approach to statistical pattern recognition is feature representation. More specifically, objects
are represented by a number of features in a feature vector space, and classifiers are built in this representation.!
This is also the general trend in lung parenchyma classification.?® Duin et al. motivated the idea of basing
classification directly on distances between objects, thereby completely avoiding features.” Instead of focusing
on finding good features for describing objects, the focus is moved to finding good dissimilarity measures for
comparing objects. Dissimilarity representations may be preferable to the traditional feature representation
approach, e.g., when there is not enough expert knowledge available to define proper features or when data is
high dimensional.?

Working in a dissimilarity representation of objects, a k nearest neighbor (kNN) classifier,” which is applied
directly on distances between objects, is a natural and simple choice. However, there exist techniques that make it
possible to use other classifiers such as normal density based classifiers on dissimilarity data.® The general idea is
to represent data by a distance matrix containing pair-wise dissimilarities between objects, also called dissimilarity
representation. From this representation, a feature space is derived in which traditional pattern recognition
techniques then can be applied. Embedding of a Fuclidean dissimilarity representation into a Euclidean space
via classical scaling is one way of doing this.'® A second approach is to treat the dissimilarity representation as a
new data set with the rows being observations and the columns being dimensions in a dissimilarity space. Each
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dimension in this space measures the dissimilarity to a particular training prototype, and the set of prototypes is
called the representation set.® A third approach that will not be considered further in this paper, is embedding
in a pseudo-Euclidean space in the case of a non-Euclidean dissimilarity representation.!? !

Compared to a density based classifier built in a dissimilarity space, kNN has high computational complexity
and large storage requirements. In kNN, distances to all training set objects need to be computed when classifying
novel patterns, and therefore the entire training set needs to be stored. In a dissimilarity space, a few objects
can be selected from the training set as prototypes in the representation set, keeping the dimensionality low
and only requiring storage of the representation set and the trained classifier. A ENN classifier makes the
classification decision based only on a local neighborhood, i.e., the k closest prototypes, which makes it sensitive
to noise. Density based classifiers in a dissimilarity representation are more global, in the sense that parameters
of Gaussian functions are estimated off-line using all available dissimilarity training data while still working in a
low dimensional dissimilarity space or embedding, which has a natural smoothing effect. Also, the classification
is based on a weighted combination of the dissimilarities between the novel pattern and the prototypes. These
weights are estimated using the entire training set and thus “essential” prototypes are given more weight in the
classification decision. A density based classifier is therefore expected to achieve better generalization when
dealing with a small and noisy data set, especially in cases of normal distributed classes.

Previously, we investigated the use of feature histograms for lung disease pattern classification in computed
tomography (CT) using a histogram dissimilarity measure directly as distance in a kNN classifier, which showed
promising results.!? In the literature, measures of histograms, such as moments of filter response histograms and
measures on co-occurrence matrices, are often used as features in a feature space when classifying lung disease
patterns in CT.2"% Using only the first few moments of a histogram might discard valuable information. Instead,
using the full histogram for classification may improve classification accuracy.'® This paper investigates the
possible benefit of building classifiers in a histogram dissimilarity representation compared to using histogram
dissimilarity directly as distance in a kNN classifier. In light of the previous discussions, we see several possible
benefits of using a density based classifier trained in a histogram dissimilarity representation for lung parenchyma
classification. To our knowledge, this has not been investigated before.

Pekalska et al. have applied dissimilarity representations in numerous standard data sets, including hand-
written digits, polygons, road signs, and chromosome band profiles.® 14 Dissimilarity representations have also
been used in various other pattern recognition applications. Trosset et al. used dissimilarity representations
for discriminating patients with Alzheimer’s disease from normal elderly subjects in magnetic resonance images.
The dissimilarities were based on hippocampal dissimilarity obtained from image registration deformations.!®
In this work, we represent images by histograms and construct dissimilarity representations based on histogram
dissimilarities, which is an approach also taken by other authors. Bruno et al. used a dissimilarity representation
based on symmetrized Kullback-Leibler divergence between RGB histograms for image retrieval.!® Paclik et al.
investigated the use of dissimilarity representations in hyperspectral data classification using various histogram
dissimilarity measures.!”

The specific application of this paper is classification of emphysema subtype and normal tissue in regions of
interest (ROI), based on the CT attenuation histogram. Emphysema is a major component of chronic obstructive
pulmonary disease (COPD) and is characterized by gradual loss of lung tissue. COPD is a growing health
problem worldwide. In the United States alone, it is the fourth leading cause of morbidity and mortality, and it
is estimated to become the fifth most burdening disease worldwide by 2020.'® Methods for reliable classification
of emphysema in lungs are therefore of interest, since they may form the basis for computer-aided diagnosis.
CT imaging is gaining more and more attention as a diagnostic tool for COPD, and it is a sensitive method
for diagnosing emphysema, assessing its severity, and determining its subtype. Both visual and quantitative CT
assessment are closely correlated with the pathological extent of emphysema.'® Emphysema is usually classified
into three subtypes, or patterns, in CT,?° and the two of the three subtypes we focus on in this paper are
the following: centrilobular emphysema (CLE), defined as multiple small low-attenuation areas; and paraseptal
emphysema (PSE), defined as multiple low-attenuation areas in a single layer along the pleura often surrounded
by interlobular septa visible as thin white walls.
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2. METHODS

This section describes the methodology that we use. Section 2.1 briefly describes how the attenuation histograms
are computed from the ROIs. Section 2.2 describes three different histogram dissimilarity measures used for
comparing histograms. Section 2.3 describes two dissimilarity representation approaches: the dissimilarity space
approach and an embedding approach based on classical scaling. Both are based on a distance matrix that in turn
is based on a histogram dissimilarity measure. Finally, Section 2.4 describes two classifiers, a linear discriminant
and a quadratic discriminant classifier, that both will be trained and tested in the dissimilarity representations.

2.1 Histogram estimation

We represent each ROI by its attenuation histogram. The histogram is estimated using non-linear binning by
choosing the histogram bins such that the total distribution of the attenuation values in the training set is
approximately uniform.!3 All histograms are normalized to sum to one.

2.2 Histogram dissimilarity measures

1

Three histogram dissimilarity measures L are considered: one based on histogram intersection (HI),2! earth

movers distance (EMD),?2 and the Lo-norm. HI is given by

Ny
HI(H,K) = min(H;, K;)
i=1

where H € R™ and K € R are histograms each with N, bins. HI(-,-) is a similarity measure, and a
dissimilarity measure based on this can be obtained by

Lyi(H,K)=1- HI(H, K). (1)
All histograms considered in this work sum to one, thus Lg(-,-) € [0,1]. EMD is given by

Ny Ny

Leup(H,K) =YY Ci;F; (2)

i=1 j=1

where C € RV > is a ground distance matrix and F € RM*No i a flow matrix. The flow matrix contains the
optimal flows obtained by solving the transportation problem of moving the mass of H such that it matches the
mass of K. The Lo-norm is given by

2.3 Dissimilarity representations

Computing all pairwise dissimilarities L between the objects from the set A = {ai,...,a,} and the set B =
{b1,...,bm} we obtain the n x m dissimilarity, or distance, matrix® 14
L(al,bl) c. L(al,bm)
Dy (A,B) = : : : (4)
L(an,b1) ... L(an,bn)

Using (4) with either (1), (2), or (3) as histogram dissimilarity, we obtain three different distance matrix repre-
sentations of the data Dy, (A, B), Dy, (A, B), and Dy, (A, B).
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2.3.1 Dissimilarity space

One way to utilize the distance matrix (4) is by extracting a representation set of prototypes R. Given a training
set 7, this approach selects a set of objects R C 7 from 7. All objects in 7 are represented in a dissimilarity
space, where the i’th dimension corresponds to the dissimilarity with prototype R; € R, i.e., we compute
Dr(T,R).® Selecting a representation set is conceptually similar to selecting a limited number of prototypes
for the kNN classifier. However, where the prototypes define the kNN classifier independently of the remaining
training set, R defines a dissimilarity space in which the entire training set is represented and used to train a
classifier. The final classifier is therefore expected to be less sensitive to the specific choice of prototypes.

There are different ways of choosing the representation set, e.g., random selection or feature selection methods,
in this context searching for prototypes. For simplicity, we will only consider random prototype selection in this
work. Random selection has previously been found to give reasonable results.'®

2.3.2 Embedding

Instead of selecting prototypes, another approach is to embed Dy (7,7) in a vector space and reduce the
dimensionality of this space. Standard inner product based techniques can be applied in this space.

A Dp(7T,T) based on an Euclidean dissimilarity measure L can be perfectly embedded in an Euclidean space
by classical scaling, which is a distance preserving linear mapping.'® It is based on the positive definite Gram
matrix

1

where ® denotes entry-wise matrix multiplication and the centering matrix J = I — %llT where n is the number
of training set objects and 1 = [1,...,1]T € R". G is factorized using an eigendecomposition

G = QAQT

where A is a diagonal matrix containing eigenvalues ordered by descending magnitude and @ is a matrix con-
taining the corresponding eigenvectors. For k& < n non-zero eigenvalues, a k-dimensional Euclidean embedding
is then obtained by

B = Q] (5)

kak

where Qr € R™* contains the first k& leading eigenvectors and A € contains the square roots of the

corresponding eigenvalues.

When Dy, (7,T) is based on a non-Euclidean dissimilarity measure, B is not positive definite and therefore has
negative eigenvalues. In this case, an Euclidean embedding cannot be obtained using (5) since the computations
rely on square roots of the eigenvalues. This problem can be addressed by considering only positive eigenvalues
and corresponding eigenvectors in (5).1°

Two of the histogram dissimilarity measures used in this work, (1) and (2), are non-Euclidean and one, (3),
is Euclidean. When using Euclidean distance, i.e., (3), classical scaling recovers the original n x N, data matrix
from the n x n distance matrix up to location, reflection, and rotation.

2.4 Classifiers

Two classifiers are evaluated in the different dissimilarity representations: a linear discriminant classifier (LDC)
and a quadratic discriminant classifier (QDC).1:? These classifiers have previously shown to perform well in
dissimilarity spaces.'* Both are density based classifiers using multivariate Gaussian functions to represent
classes w; = {p:, 2i}

1 1 _
Gi(x; pi, 2i) = CNERE exp ( - E(X — )T (x - Mz‘))
K3
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where N is the dimensionality of the input space and x € RY is a position in the input space. In LDC, equal
class covariance matrices ¥ are assumed resulting in the following linear discriminant function

~ 1 p
9:(x) = X" i = S 27 i + log Plwi) (6)

where ¥ and the class sample means p; are estimated in the dissimilarity representation obtained from Dy, (7,7)
and P(w;) is the class prior. In QDC, each class covariance matrix 3; is estimated separately resulting in the
following quadratic discriminant function

1 1 _
gi(x) = ~3 log |%;] — §(x — )8 (x — i) + log P(w;). (7)
The density based classifiers assigns class w; to observation x according to the maximum discriminant function

() = arg max gi(x). ®)

3. EXPERIMENTS AND RESULTS

The data used for the experiments originates from a set, of thin-slice CT images of the thorax. CT was performed
using GE equipment (LightSpeed QX/i; GE Medical Systems, Milwaukee, WI, USA) with four detector rows,
using the following parameters: In-plane resolution 0.78 x 0.78 mm, 1.25 mm slice thickness, tube voltage 140
kV, and tube current 200 milliampere (mA). The slices were reconstructed using a high spatial resolution (bone)
algorithm. A population of 25 patients, 8 healthy non-smokers, 4 smokers without COPD, and 13 smokers
diagnosed with moderate or severe COPD according to lung function tests'® were scanned in the upper, middle,
and lower lung, resulting in a total of 75 CT slices.

Visual assessment of the leading pattern, either NT, CLE, or PSE, in each of the 75 slices was done individually
by an experienced chest radiologist and a CT experienced pulmonologist. 168 non-overlapping ROIs of size 31 x 31
pixels were annotated in the slices, representing the three classes: NT (59 observations), CLE (50 observations),
and PSE (59 observations). The NT ROIs were annotated in the non-smokers and the CLE and PSE ROIs were
annotated in the smokers, within the area(s) of the leading pattern.

Figure 1 shows an ROI from each of the three classes, together with the CT slices in which they were annotated,
and Figure 2 shows the attenuation histograms of all 168 ROIs estimated using the non-linear binning principle
described in Section 2.1.

3.1 Visualizing dissimilarity spaces

Three prototypes are selected at random, one from each class, and the resulting pair-wise dissimilarity spaces
are inspected by plotting the dissimilarities between all observations and one prototype versus the dissimilarities
between all observations and second prototype. The results can be seen in Figure 3. The class separation is
already quite good using only two prototypes and it can be expected to be even better when using more than
two prototypes. In some cases, there is a tendency to degenerate behavior of the resulting spaces, e.g., in Figure
3(i) where the PSE samples almost reside on a line in the two-dimensional dissimilarity space.

3.2 Visualizing embeddings

Figure 4 shows the eigenvalues derived in the embedding process for Dr,,,,, Dryp, and Dr, on our data. As
seen in Figure 4(a) and 4(b), the non-Euclidean property of Ly; and Lgpp is revealed by the presence of
negative eigenvalues. The number of eigenvalues that are significantly different from zero is small in all three
cases, showing that the intrinsic dimensionality of the three dissimilarity representations of the data is rather
low.

Figure 5 shows two-dimensional embeddings obtained by using the two eigenvectors with the largest positive
eigenvalues. The class separation is generally good in all three representations.
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(a) CT slice with leading NT (b) CT slice with leading CLE  (c¢) CT slice with leading PSE
pattern. pattern. pattern.

) NT ROL ) CLE ROL (f) PSE ROL
Figure 1. Examples slices and ROIs annotated in the same slices. The ROI in 1(d) is from 1(a) etc.

(a) NT. (b) CLE. (c) PSE.

Figure 2. Attenuation histograms estimated from the data. Individual histograms are shown in gray and the mean
histogram is shown in black.
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Figure 3. Examples of dissimilarity spaces obtained using representation sets with two random prototypes.
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(a) DLHI' (b) DLEMD' (C) DLz'

Figure 4. Eigenvalues derived in the embedding process sorted by absolute value. In 4(a) and 4(b) the eigenvalues are
divided in a positive and a negative part.
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Figure 5. Two-dimensional embedding of Dy, using the two eigenvectors with the largest positive eigenvalue.

3.3 Classifier stability

We use feature curves for inspecting the stability of the dissimilarity representation based classifiers as a func-
tion of the number of dimensions in the representation. That is, as a function of the number of prototypes
in R and number of retained eigenvectors in E. The feature curves are computed based on thirty repeated
random 50%/50% data splits. In these splits, balanced class distributions are ensured by placing half the ROIs
representing one class in the training set and the other half in the test set. In each split, the dimension range
N =1,2,...,30] is used in turn by selecting N random prototypes in the dissimilarity space approach and N
positive eigenvectors in the embedding approach, in both cases from the training set.

Figure 6 shows the resulting prototype curves. QDC is more sensitive to the number of dimensions compared
to LDC. This phenomenon can be explained by the increasing number of parameters in QDC, which requires
more training samples for reliable estimation.

3.4 Classifier accuracy

The classification accuracy is evaluated using leave-one-out error estimation on the 168 ROIs, and the following
classifier setups are evaluated:

e kNN using histogram dissimilarity measure L as distance. k = [1,2,...,5], L = {Lur, Lemp, La}-

e Classifier C' in a dissimilarity space defined by random representation set selection from distance matrix
Dy. C ={LDC,QDC}, D, ={Dry;sDrpyps Do}

e Classifier C' in an embedding of a distance matrix Dr. C' = {LDC,QDC}, D, = {Dr,,;» DrLpup: DL, }-
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Figure 6. Feature curves of dissimilarity representation based LDC and QDC. Standard deviations are shown as dashed
lines. The asterisks mark the minimum of each curve. The performance of the best kNN classifier, for £ = [1,...,5],
using the training set as prototypes and the histogram dissimilarity in question as distance is also shown for reference as
a horizontal line.
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Classifier Lyr Lemp Lo

1NN 91.7 92.9 92.3
2NN 91.1 91.1 91.7
kNN using L as distance 3NN 92.9 91.1 92.3
ANN 92.3 90.5 91.7
5NN 91.1 89.3 91.1
LDC 88.6 (£1.0 88.3 (x1.7 87.6 (£1.3
Dissimilarity space ( ) ( ) ( )
QDC 93.1 (£1.1) 90.1 (£2.0) 93.3 (+1.2)
LDC 91.1 97.0 86.3
Embedding
QDC 94.1 95.2 95.2

Table 1. Results of the leave-one-out evaluation. The reported performance of the dissimilarity space experiments is an
average of ten repeated leave-one-out experiments where the representation set is drawn at random each time. The same
random representation set is used for all tested configurations. The standard deviations of these experiments are shown
in parenthesis.

The number of bins in the non-linear attenuation histogram is chosen as N;, = | {/N,,|, where N, is the number
of pixels in the ROI. In calculating Lgap, the ground distance matrix, C in (2), is constructed such that the
distance between two neighboring bins the attenuation histograms is one. More generally, the ground distance
between bin i and bin j is C;; = |i — j|. Further, we use the EMD implementation by Rubner.?® The LDC and
QDC class priors, P(w;) in (6) and (7), are estimated from data. The dimensionality of the dissimilarity spaces
in all classifier setups is, somewhat arbitrarily, fixed to seven. All dissimilarity representation based classifiers
perform reasonably well at this dimensionality according to the feature curves in Figure 6. The experiments are
carried out in Matlab using the PRTools toolbox.2*

In general, all the classifiers perform well, see Table 1, with classification accuracies in the range 88.3%—97.0%.
Using the dissimilarity space approach with randomly chosen prototypes generally performs worse than using
kNN with histogram dissimilarity as distance directly. However, the embedding approach shows very promising
results, especially when Lgasp is used as histogram dissimilarity. The best estimated classification accuracy of
97.0% is achieved using LDC in the approximate embedding of Dr,,,,,,, and this is significantly better than the
best kNN with histogram dissimilarity as distance according to a McNemar’s test?> (p = 0.046).

4. DISCUSSION AND CONCLUSIONS

The best dissimilarity representation based classifier achieves a classification accuracy of 97.0%, and this is signif-
icantly better (p = 0.046) than the best kNN classifier with histogram dissimilarity as distance, which achieved
an accuracy of 92.9%. Generally, the embedding based classifiers perform slightly better than both the kNN
and the dissimilarity space classifiers. Further, dissimilarity space based QDC, using only seven prototypes,
performed similar to kNN. These results suggest that building classifiers in a dissimilarity representation, espe-
cially by embedding, is beneficial in the demonstrated application. The improved accuracy can be due to several
factors. Firstly, a density based classifier built in a dissimilarity representation is more global, making use of all
available training data in the classification decision, as opposed to a kNN classifier, which classifies only based on
the k£ nearest prototypes. Second, in the embedding, the classes seem to be approximately normal distributed,
see Figure 5, which fits well with normal density based classifiers like LCD and QDC.

Accuracies previously reported in the literature on lung parenchyma classification in CT including at least
one type of emphysema, and using measures of feature histograms as features in a feature space, are generally
lower and lie in the range 76% — 93,5%.2°% These results are not directly comparable due to differences in the
data, the choice of classes, etc. Nevertheless, the high accuracies of our experiments indicate that using the full
feature histogram is beneficial and that a dissimilarity representation on histogram dissimilarities is a good way
of utilizing the full feature histogram information.
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In this work, we evaluated the dissimilarity space approach by drawing random prototypes for simplicity.
However, prototype selection could be used instead, as in,'* which could improve the performance of the repre-
sentation set approach. Another possibility would be to draw the prototypes at random on class-level such that
an equal amount of prototypes from each class are present in the representation set.

QDC, and to some degree also LDC, showed unstable behavior in high dimensional dissimilarity spaces and
embeddings, as seen in the feature curves in Figure 6. This problem could be addressed by regularizing the
estimated covariance matrices, allowing a larger number of dimensions to be used.? This could possibly improve
the classification accuracy.

A natural next step would be to try dissimilarity representations based on other feature histograms than the
attenuation histogram. For example, feature histograms describing local structure like local binary patterns'2
or other types of features previously used in lung parenchyma classification.?® Combining the attenuation
histogram and feature histograms describing local structure in a dissimilarity representation might improve
performance.

In conclusion, we explore the use of normal density based classifiers built in a dissimilarity representation for
lung parenchyma classification. Two different dissimilarity representation approaches are considered; embedding
by classical scaling and the dissimilarity space approach, and dissimilarity representations based on different
histogram dissimilarity measures are tried out. Two classifiers, LDC and QDC, are evaluated in the dissimilarity
representations, and the best dissimilarity representation based classifier performed significantly better than
using histogram dissimilarity directly as distance in a kNN classifier. A histogram dissimilarity representation
allows for utilizing full feature histograms in classification, and through this representation, normal density
based classifiers can be trained on histogram dissimilarity data. Further, sophisticated histogram dissimilarity
measures, like the earth movers distance, fit naturally into this framework.
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