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Abstract. Theoretically, inverse consistency in an image registration
problem can be achieved by employing a diffeomorphic scheme that uses
transformations parametrized by stationary velocity fields (SVF). The
displacement from a given SVF, formulated as a series of self composi-
tions of a transformation function, can be obtained by Euler integration
in the time domain. However in practice, the discrete time integration
produces results that are inverse inconsistent, and inverse consistency in
the final solution needs to be explicitly ensured. One way of achieving this
is to penalize the endpoint displacement offset obtained by evaluating a
composition of the transformation with its inverse at an arbitrary point.
In this paper, we propose a variation in which the displacement penaliza-
tion is required only in the first composition step of the transformation
thereby bringing down the computational complexity. We compare these
two ways of enforcing inverse consistency by applying the registration
framework on four pairs of brain magnetic resonance images. We ob-
serve that the proposed stepwise scheme maintains both precision and
level of inverse consistency similar to the endpoint scheme.

1 Introduction

Inverse consistency is particularly important in studies where voxel-wise statis-
tics are used to characterize anatomical changes over time [1]. Diffeomorphic
(differentiable transformation with differentiable inverse) methods in image reg-
istration are attractive because they yield transformations that are invertible.
However, inverse consistency is in practice achievable only if the discrete integral
of the similarity measure and regularization are symmetrically approximated [2].
Several diffeomorphic approaches have been proposed and the two most promi-
nent among them are: large deformation diffeomorphic metric mapping (LD-
DMM) [3, 4] and Log-Euclidean framework based on stationary velocity fields
(SVFs) [6].

In SVF based image registration, paths of diffeomorphism are generated us-
ing one parameter subgroups parameterized by SVFs through the Lie group
exponential. The Lie group exponential is realized through a series of self com-
positions of a transformation function [7]. The generated diffeomorphism paths



are geodesic with respect to the canonical Cartan connection [8]. Applications
of SVF have found widespread success in image registration [8–10].

Deformations generated by SVFs are invertible. However, due to discretiza-
tion errors, inverse consistency needs to be explicitly enforced, most often through
a regularization. Inverse consistency has been addressed by [11] where both the
forward and backward transformations were jointly estimated by minimizing the
displacement offset obtained by composing the forward and backward transfor-
mations at an arbitrary point. Other methods that enforce inverse consistency
(both diffeomorphic and non-diffeomorphic schemes) are, but not limited to,
constraining the transformation [12], penalizing the Jacobian [13], symmetrizing
every gradient descent step [14], log-average of forward and backward trans-
formations during optimization [15] and finding a mid-space to make sure the
transformations are evenly applied [16] .

In this paper, we propose to use a modified version of the inverse consistency
term defined in [11] where we will apply the displacement offset penalization
only on the first composition of the flow field (or stepwise scheme) as opposed to
using the entire flow field (or endpoint scheme) . Section 2 will briefly introduce
the concept of SVFs based image registration, followed by an introduction to
the inverse consistency enforcing regularization. In Section 3, we will present a
comparison of the proposed stepwise regularization and endpoint regularization
by applying the framework on four pairs of brain magnetic resonance images
(MRIs).

2 Registration

Given an image pair I1, I2, registration is formulated as a variational optimiza-
tion problem, where the cost function that needs to be minimized is represented
as,

E(I1, I2;ϕ) =

∫
Ω

M(I1(ϕ−1), I2) + λR(ϕ) dx (1)

where E is the overall energy, M is the similarity measure, normalized mutual
information (NMI) [17] in this study, R is a regularization term, ϕ is a warp and
x = (x, y, z) is a voxel position. Here, we focus on SVF based registration using
B-splines where the warp ϕ is parametrized as

ϕ(x) = φ1 where

{
dφt

dt = B(x; p)

φ0 = x
, (2)

B(x; p) =

3∑
i=0

3∑
j=0

3∑
k=0

βi(x)βj(y)βk(z)pi,j,k, (3)

where p is the B-spline parameter and β is a cubic B-spline basis function. A
displacement can be realized as an Euler integration with unit time step [7]. For



example, given n steps, the Euler integration approximation will be;

φ
1
n = x +

B(x; p)

n

φt+
1
n = φt ◦ φ 1

n .

(4)

2.1 Inverse consistency

In [11], inverse consistency was enforced by penalizing the displacement error
generated after composing a transformation with its inverse. However, in this
method, the computation of inverse is a computationally expensive approxima-
tion [14]. We instead combine both the forward and backward registration in
the same cost function and explicitly compute the inverse transformation, thus
removing the lag due to computing the forward and backward transformations
sequentially. With the Euler’s scheme, inverse consistency can be achieved in
two different ways. The first being the endpoint scheme, where the displacement
offset is generated by using the entire flow field,

Eendpoint(I1, I2;ϕ) =∫
Ωb

M(I1(φ1b), I2)+ λ||x−φ1f (φ1b)||2 dx+

∫
Ωf

M(I1, I2(φ1f ))+ λ||x−φ1b(φ1f )||2dx

(5)

where Ωf,b are the region of interest in the source and target images and x ∈
Ωf,b depending on the direction of registration. Note that ϕ = {φf , φb}. The
advantage of using the Euler’s scheme is that, parametrization of the flow field
is required only at the first composition. Hence, if the first composition is made
inverse consistent, so will their compositions be. Therefore, the cost function
(from (5)) for the stepwise scheme can be re-written as,

Estepwise(I1, I2;ϕ) =∫
Ωb

M(I1(φ1b), I2) + n2 λ||x− φ
1
n

f (φ
1
n

b )||2 dx+∫
Ωf

M(I1, I2(φ1f )) + n2 λ||x− φ
1
n

b (φ
1
n

f )||2 dx

(6)

where n is the number of compositions used to realize a deformation.

2.2 Scaling and Squaring

The scaling and squaring method [6] speeds up the integration of the SVF.
Although B-spline based SVF implementations that use scaling and squaring
exist [13], scaling and squaring in this context is limited by the fact that a new



B-spline must be fit at each squaring step. As this fitting cannot be exact, the
control over the parametrization is lost and folds may occur. Furthermore, if
displacement offsets are to be used for ensuring inverse consistency, the entire
velocity field needs to be traversed in both directions to measure the offset.
Therefore, we focus on inverse consistency only with Euler integration without
scaling and squaring.

2.3 Volume change computation

Since the transformations are a composition of B-splines and using Jacobian
integration might amplify numerical noise in the deformation, we use cube prop-
agation [18] instead to compute local volume changes.

3 Experiments

Four pairs of 1.5T MRIs randomly chosen from the Alzheimer’s disease neu-
roimaging initiative database (2 normal controls and 2 mild cognitively im-
paired) were co-registered. Bias correction and segmentations were done using
the Freesurfer crossectional pipeline. The dimension of the images (both bias
corrected and segmentations) was 2563 mm with 13 mm isotropic voxels.

To perform a simple assessment of the methods, only one resolution of con-
trol points with a spacing of ≈5 mm was used. The images were filtered with
a Gaussian kernel of size 0.2 mm. Number of compositions used were n =
1, 2, 4, 8, 12, 16 and 24. Registrations were run in 3 variations;

– No IC: Using (5) by setting λ = 0,

– Endpoint: Using (5) by setting λ = 0.03,

– Stepwise: Using (6) by setting λ = 0.03,

3.1 Evaluation metrics

To evaluate the performance of the registration itself, we will inspect the correla-
tion coefficient between the source and the registered target image [19]. Inverse
consistency was checked by computing; the displacement offset (∆x) and atrophy
error (AE);

∆x =
1

N

∑
Ω

||x− φ1b(φ1f (x))||,AE =
1

N
|
∑
Ω

(Cf −
1

Cb(φ1f (x))
)|

where Cf is the forward voxel-wise volume change map computed using cube
propgation, Cb(φ

1
f (x)) is the backward change map transformed to the target

domain using the forward transformation, x are random N (253) points in the
image and Ω is a region of interest, whole brain in this case.



4 Results

Figure 1 illustrates the mean correlation coefficient between the source and the
registered target image over the 4 image registrations. The correlation coeffi-
cient improves with the number of compositions for the non-inverse consistent
registration scheme. However, the correlation coefficient tends to remain the
same with both the inverse consistent schemes, but better than the non-inverse
consistent scheme regardless of the number of compositions used.

Initially, we compute displacement offset using the deformations from the
inverse inconsistent registration scheme by shooting a set of random points using
both the entire flow field and only the first composition of the flow field with
the offset multiplied by n2. We observed that the latter approximates the former
well. AE and the displacement offsets can be seen in Figures 2, 3. Both AEs and
displacement offsets are quite similar for both stepwise and endpoint schemes.

The runtimes for both stepwise and non-inverse consistent scheme were the
same and lower than the endpoint scheme (a scale up factor of ≈3), i.e., for
an optimization iteration of a registration (with 8 compositions) run with step-
wise/no inverse consistency scheme, the runtime was 10 secs when compared to
the 30 secs with the endpoint scheme (single core implementation on a 2.5 Ghz
Xeon). It is important to note that the mean numbers presented (correlation
coefficient, AE and ∆x) were only from the forward runs since the errors were
similar with the backward runs.
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Fig. 1. Mean correlation coefficient between source and registered target image as a
function of number of composition
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Fig. 2. ∆x as a function of number of composition
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Fig. 3. Mean AE as a function of number of composition. 0.1 is 10% atrophy error



5 Discussion and Conclusions

In this article, we proposed a stepwise inverse consistent Euler’s scheme for
diffeomorphic image registration that enforces inverse consistency on the first
composition of the transformation as opposed to enforcing it on the endpoint
of the full composition, hereby reducing computational complexity. In addition,
we presented an implementation of SVF based image registration parametrized
by B-splines and in conjunction with the Euler’s scheme. The proposed regular-
ization is at a discretization level and can enable symmetric realization of large
deformations.

We performed a pairwise comparisons of the stepwise and the endpoint in-
verse consistency scheme. For comparison we report the registration error (inten-
sity correlation coefficient), displacement offset and bidirectional atrophy differ-
ence. The stepwise scheme reduces computational cost while maintaining regis-
tration and inverse consistency precision when compared to the endpoint scheme.

This method can be utilized in realizing symmetric large deformations par-
simoniously since it parametrizes SVF with the computationally efficient B-
splines. In the future, we would like to investigate the impact of this registration
scheme in separating diagnostic groups (Alzheimer’s disease and normal con-
trols) based on atrophy in both the whole brain and in subcortical structures.
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