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Abstract. In this paper, a texton-based classification system based on raw pixel 

representation along with a support vector machine with radial basis function 

kernel is proposed for the classification of emphysema in computed 

tomography images of the lung. The proposed approach is tested on 168 

annotated regions of interest consisting of normal tissue, centrilobular 

emphysema, and paraseptal emphysema. The results show the superiority of the 

proposed approach to common techniques in the literature including moments 

of the histogram of filter responses based on Gaussian derivatives. The 

performance of the proposed system, with an accuracy of 96.43%, also slightly 

improves over a recently proposed approach based on local binary patterns. 

1   Introduction 

Computerized quantitative analysis in pulmonary computed tomography (CT) images 

is a vital tool in the analysis of chronic obstructive pulmonary disease (COPD). The 

disease is projected to become the fifth most burdening disease worldwide by 2020 

[1]. COPD is a chronic lung disease characterized by limitation of airflow, and it 

comprises two components: small airway disease and emphysema, which is 

characterized by gradual loss of lung tissue. 

Current methods for the diagnosis and quantification of COPD suffer from several 

limitations. Common computerized methods on CT images do not use all the 

information available in a CT image. For example, the relative area of emphysema 

below a threshold (RA) [2] considers only independent pixel intensity values and 

relies on a hand-picked parameter, the threshold. The primary diagnostic tool for 

COPD is spirometry by which various pulmonary function tests (PFTs) are performed 

[1]. These are cheap and fast to acquire, but they have a low sensitivity to early stages 

of COPD. 

This work focuses on improving the assessment of emphysema in CT images. 

Emphysema lesions, or bullae, are visible in CT images as areas of abnormally low 
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attenuation values close to that of air, and it is often classified into three subtypes [3]. 

These subtypes are the following: centrilobular emphysema (CLE), defined as 

multiple small low-attenuation areas; paraseptal emphysema (PSE), defined as 

multiple low-attenuation areas in a single layer along the pleura often surrounded by 

interlobular septa that is visible as thin white walls; and panlobular emphysema 

(PLE), defined as a low-attenuation lung with fewer and smaller pulmonary vessels. 

As the texture of lung tissue is affected by the type of disease, texture analysis can 

be used for quantitative assessment of different subtypes of emphysema. Classifying 

emphysema in CT images of the lung using texture features was first introduced in 

[4]. Since then, various features have been used for the classification of emphysema 

and other disorders in lung CT images including moments of histograms computed on 

the outputs of filter banks consisting of Gaussian derivatives [5], measures on gray-

level co-occurrence matrices (GLCM), measures on gray-level run-length matrices 

(GLRLM), and moments of the attenuation histogram [4, 6, 7]. 

Recently, it was shown that small-sized local operators like local binary patterns 

(LBP) [8] and the patch representation of small local neighborhood in texton-based 

approaches [9] yield excellent texture classification performance on standard texture 

databases. It should be noted here that small-sized local operators are desirable in 

situations where the region of interest (ROI) is rather small, which is often the case in 

texture analysis in medical imaging, where pathology can be localized in small areas. 

This is because of two reasons: first, convolution with large support filter banks 

suffers from boundary effects; second, more patches can be extracted using small-

sized local operators that makes the estimation of image statistics more reliable [9]. 

In this paper, we propose to use small patch representation in texton-based 

approaches along with support vector machines (SVMs) for the classification of 

emphysema in CT images of the lung. To our knowledge, this technique has never 

been used for the classification of CT lung images. 

The effectiveness of small-sized local operators in medical imaging is shown in 

[10] using LBP texture features and k-NN classifier with similar results to filter bank 

approaches based on Gaussian derivatives. In this work, we also show that texton-

based approaches using a SVM with radial basis function (RBF) kernel produces 

better results than common filter bank approaches and slightly better results than 

LBP, which can be considered as the state of the art in emphysema classification [10]. 

2   Texton-Based Texture Classification 

In this section, the principle of texton-based texture classification is reviewed [9, 11, 

12]. This approach is independent of the representation used to describe local image 

information, i.e., it could be raw pixel representation, outputs of filter banks 

convolved with the patches, or even more complex representations. The texton-based 

approach can be divided into three stages: 1) construction of a codebook of textons 

using a clustering algorithm such as k-means, 2) learning texton histograms from the 

training set, and 3) classification of the test set by finding the histogram of textons in 

the test set and comparing to those found during stage two to find the nearest pattern. 

These three steps are explained in the remaining of this section. 



2.1   Construction of Texton Codebook  

To construct the texton codebook, small-sized local patches are randomly extracted 

from each image in the training set. These small patches are then aggregated over all 

images in a class and clustered using an unsupervised algorithm such as k-means. 

Obtained cluster centers form a dictionary that represents the class of textures used. It 

is saved as the codebook to be used in the next stage.  Fig. 1 displays sample images 

of lung CT ROIs used in this paper and the codebook dictionary computed over all 

ROIs using the texton size of 7 × 7 pixels and k = 40 in k-means.  

2.2   Learning the Model 

The next stage is to find the features (learn the model) using the images in the training 

set. To this end, these steps are followed: first, extract small patches of the same size 

as the previous stage by sliding a window over each training image in a class. Second, 

find the distance between each patch to all textons in the dictionary to find the closest 

match. Third, update a histogram of textons accordingly for each image based on the 

closest match found. This yield a histogram for each image in the training set, which 

is used as the features representing that image after normalization. These features are 

used for training a classifier such as SVM. Fig. 2 illustrates the construction of the 

codebook and learning the model in a texton-based classification system. 

2.3   Classification 

To classify a test image, the same steps as in the learning stage are followed to find 

the features for the test image. This includes extraction of small patches from each 

test image in a class, finding the closest match to these patches from the dictionary, 

and computing the normalized histogram of obtained closest textons to define a 

feature vector for the image. The trained classifier in the learning stage is used to find 

the class of the test image. 

Both k-NN and SVM are tested in this paper for the classification of texton-based 

features. In SVM, a RBF kernel as given in (1) is used as it is recommended as the 

first kernel choice in [13]. In (1), γ is the kernel width and xi and xj are two sample 

patterns. 

 

 . 
(1) 

3   Experimental Setup 

Data Preparation. The data used for the experiments is the same as in [10], which is 

collected from a set of thin-slice CT images of the thorax from an exploratory study 

carried out at the Department of Respiratory Medicine, Gentofte University Hospital, 



Denmark [14]. The slices were reconstructed using a high spatial resolution (bone) 

algorithm. Each subject was scanned in the upper, middle, and lower lung, resulting in 

three 1.25 mm thick slices with a resolution of 0.78 × 0.78 mm per subject. 

The leading pattern in 75 CT slices from 25 subjects, 8 healthy non-smokers, 4 

smokers without COPD, and 13 smokers diagnosed with moderate or severe COPD 

according to PFTs [1], was visually assessed by an experienced chest radiologist and 

a CT experienced pulmonologist independently. The leading pattern could either be 

normal tissue (NT), CLE, PSE, or PLE, in each of the slices, and consensus readings 

were obtained in all cases of disagreement. 168 non-overlapping ROIs of size 50 × 50 

pixels were subsequently annotated in the slices representing the three classes: NT (59 

ROIs), CLE (50 ROIs), and PSE (59 ROIs). The NT ROIs were annotated in the non-

smokers and the CLE and PSE ROIs were annotated in the two smokers' subject 

classes, within the area(s) of the leading pattern. PLE was excluded due to very few 

cases in the data set (only 2 out of 20 subjects diagnosed with COPD). 

 

 

  

Fig. 1. Sample ROIs of size 50 × 50 pixels (left) in three classes, i.e., normal lung (top left 

row), CLE (middle left row), and PSE (bottom left row). The constructed codebook using texton 

sizes of 7 × 7 pixels and k = 40 in k-means (right). 

 

 

 

 

 

 

 

 

 

Fig. 2. The illustration of different stages of a texton-based texture classification system: the 

generation of texton codebooks using k-means clustering (left) and the generation of features by 

computing the texton histograms of training set (right).    

 

 

 



Computation of Texton-Based Features. For the construction of the codebook, 500 

random patches are extracted from each ROI in each class. Patch sizes of 3 × 3 to 8 × 

8 pixels are used in the experiments. No filter banks are applied and raw pixel 

representation is used instead. Since in CT images, the mean of the intensity in the 

images indicate a physical property of the tissue displayed, it should not be removed. 

The patches extracted from different ROIs of each class are clustered using k-means 

to find the codebook that represents a class. Two different values of k, i.e., k = 10 and 

k = 40 are tested in the experiments leading to 3 × 10 = 30 or 3 × 40 = 120 (3 is the 

number of classes) textons in the codebook, respectively (refer to Fig. 1). After 

construction of texton codebook, the texton frequency histograms of the ROIs are 

computed to find the model. In this stage, small overlapping patches with the same 

size as what was used in the clustering stage are systematically extracted from each 

ROI. As in the clustering stage, no filter bank is used and raw pixel representation is 

considered. Euclidean distance between the resulting textons (collection of small 

patches) and the textons in the codebook is computed in order to identify the most 

similar texton in the codebook and the corresponding histogram of textons is updated 

accordingly. The histograms are normalized and used as the features. 

Classifier and Evaluation. Both k-NN and SVM are used in the experiments. The 

crucial issue in using SVMs is finding a suitable kernel and the optimum trade-off 

parameter C. RBF kernel is used and the optimum kernel width, i.e., γ in (1) and C are 

found by a grid search on the training set at each specific texton size and k value (in k-

means) used in the experiments. This grid search is performed by leave-one-subject-

out on the training set. The computation of the texton codebook is performed each 

time on the training set, excluding the validation set. The proposed texton-based 

classification system using SVM as classifier with RBF kernel and optimal C and γ is 

evaluated using leave-one-subject-out. This means that, at each trial, all ROIs from 

one patient are held out as the test set and the remaining ROIs as the training set.  

4   Results and Discussions  

In this section, we first present the results for the proposed texton-based texture 

classification system using SVM as classifier with the parameters chosen as explained 

in previous section. Then comparison with other techniques is provided. 

After finding the optimal C and γ at each texton size and k value (of k-means), the 

accuracy of the classification system is evaluated using leave-one-subject-out for the 

particular texton size and k. The results are shown in Table 1 for various texton sizes 

and two different values of k in k-means. It can be seen from these results that using k 

= 40 in k-means improves the performance of the classification system over k = 10. 

The best result is obtained at the texton size of 4 × 4 pixels with k = 40. It can be 

observed from the results that the accuracy of classification system decreases with 

increasing texton size. This can be because increasing the texton size leads to a higher 

dimensional space in k-means, requiring more data for reliable clustering. Also, fewer 

patches can be extracted from the ROIs at higher texton sizes that may degrade the 

estimation of model as explained in Section 2.2. 



Comparison with Other Techniques. The first comparison is made between texton-

based classification system using SVM and k-NN classifiers. The optimal parameter k 

of the k-NN classifier is found using a validation set in the training set in a similar 

way as the grid search performed for the parameters in the SVM classifier. The results 

are shown in Table 1, and as can be seen, the SVM classifier performs much better 

than the k-NN classifier. The superiority of SVM over k-NN was also reported on 

standard texture databases such as Columbia-Utrecht (CUReT) database [15].  

The second comparison is made between the proposed texton-based classification 

system using SVM as classifier and the results published in [10]. Since the same data 

as in [10] is used in our experiments, the results are directly comparable. In [10], the 

results are provided for the following approaches: 

1) GFB1 (Gaussian filter bank 1): using the moments of histogram computed on 

the outputs of convolved Gaussian filter banks with four rotation invariant 

filters obtained from linear combination of Gaussian derivatives at five scales. 

2) ICR (intensity, co-occurrence, and run-length): the feature vector consists of 

the first four moments of the intensity histogram; the contrast, correlation, 

energy, entropy, and homogeneity computed on GLCM; and short-run 

emphasis, long-run emphasis, gray-level; nonuniformity, run-length 

nonuniformity and run percentage computed on GLRLM. 

3) INT: intensity histograms. 

4) GFB2: similar to GFB1 but instead of using moments of histograms, the 

histograms themselves are used. Hence they are richer in information. 

5) LBP1 (local binary pattern 1): Basic rotation invariant LBP histograms. 

6) LBP2: joint 2D LBP and intensity histograms. 

For more information on each method the reader is urged to refer to [10] and the 

references therein. The results based on the above techniques are provided in Table 2 

along with the best result obtained from the proposed approach based on texton 

signatures with SVM classifier. 

The confusion matrix for the best results in [10], i.e., the results of LBP2, and our 

best results are provided in Table 2. The proposed approach attains performance 

better than LBP2 though McNemar's test does not indicate the difference to be 

significant (p = 0.75). The specificity of texton-based and LBP2 approaches are 

98.31% and 93.33%, while their sensitivity are 95.41% and 97.25%, respectively 

(when comparing NT versus CLE and PSE).  

 

 

Table 1. The results of texton-based classification system on CT images of lung used in this 

paper for k = 10 and 40 and various texton sizes using SVM and k-NN classifiers.    

Texton Size 

 

SVM Accuracy  

 (k(a) = 10) 

SVM Accuracy 

(k(a) = 40) 

k-NN Accuracy   

 (k(a) = 10) 

k-NN Accuracy   

(k(a) = 40) 

3 × 3 94.05 95.24 90.48 88.1 

4 × 4 93.45 96.43 86.31 86.9 

5 × 5 92.86 95.83 85.12 88.1 

6 × 6 92.26 94.05 82.74 90.48 

7 × 7 91.67 90.48 83.33 89.29 

8 × 8 88.10 92.86 82.74 89.88 
(a)

 k here refers to the k in k-means clustering not the k in k-NN classifier. 



Table 2. The comparison between the best results obtained from the proposed approach and the 

results of other techniques on the same data (left); the confusion matrix of LBP2 (middle) and 

texton-based approach with k = 40, texton size of 4 × 4 pixels, and SVM classifier (right).    

 

 

 

 

 

 

 

5   Conclusion 

In this paper, a texton-based texture classification system using a SVM with RBF 

kernel is proposed for the classification of emphysema in CT images of the lung. It is 

shown that the proposed approach performs significantly better than common 

approaches based on moments of histograms of filter bank responses using Gaussian 

derivatives and slightly improve the performance over a recently proposed approach 

based on LBPs. LBP operators are, by design, invariant to monotonic intensity 

transformations. While this is desirable in some applications, in the classification of 

Lung CT images, the mean of intensity is important and this explains the poor 

performance of LBP1 in Table 2 as it discards the mean of intensity in the ROIs. Due 

to this drawback of LBPs, in [10], the joint intensity and LBP histograms are 

considered (LBP2). This improves the performance of the LBPs in this application at 

the cost of adding to the complexity of the approach. The texton-based approach does 

not suffer from this problem as it is not invariant to intensity transformations. It is 

also shown that using SVM in the proposed approach yields higher accuracy than a k-

NN classifier. 

As the state of the art in examination of lung is volumetric chest CT scans, one 

may wonder whether texton-based approach can be extended to 3D data. As the 

computation of texton signatures is fast especially when raw pixel representation is 

used, we expect that the approach can easily be extended to 3D data. The main 

obstacle might be the computational cost for optimizing the SVM parameters in a grid 

search that can be reduced by using an m-fold cross-validation at patient level instead 

of leave-one-subject-out used in our experiments. 

In future work, combining the classification outputs at different texton sizes using 

multiple classifier systems (MCS) will be investigated for possible improvement of 

the results. This improvement is expected if the misclassification is done on different 

ROIs in different texton sizes such that the MCS yield better results due to the 

diversity of the classifiers [16].  
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Technique Accuracy 

GFB1 61.3 

ICR 89.3 

INT 87.5 

GFB2 94.0 

LBP1 79.2 

LBP2 95.2 

Texton-based 96.4 

 

 
Estimated Labels 

True Labels NT CLE PSE 

NT 55 0 4 

CLE 1 49 0 

PSE 2 1 56 

 

 
Estimated Labels 

True Labels NT CLE PSE 

NT 58 0 1 

CLE 3 47 0 

PSE 2 0 57 
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